138l

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Current revision (06:24, 7 February 2024) (edit) (undo)
 
Line 3: Line 3:
<StructureSection load='138l' size='340' side='right'caption='[[138l]], [[Resolution|resolution]] 1.70&Aring;' scene=''>
<StructureSection load='138l' size='340' side='right'caption='[[138l]], [[Resolution|resolution]] 1.70&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
-
<table><tr><td colspan='2'>[[138l]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Bpt4 Bpt4]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=138L OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=138L FirstGlance]. <br>
+
<table><tr><td colspan='2'>[[138l]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Escherichia_virus_T4 Escherichia virus T4]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=138L OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=138L FirstGlance]. <br>
-
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=BME:BETA-MERCAPTOETHANOL'>BME</scene>, <scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene></td></tr>
+
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.7&#8491;</td></tr>
-
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[https://en.wikipedia.org/wiki/Lysozyme Lysozyme], with EC number [https://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.2.1.17 3.2.1.17] </span></td></tr>
+
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=BME:BETA-MERCAPTOETHANOL'>BME</scene>, <scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=138l FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=138l OCA], [https://pdbe.org/138l PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=138l RCSB], [https://www.ebi.ac.uk/pdbsum/138l PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=138l ProSAT]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=138l FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=138l OCA], [https://pdbe.org/138l PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=138l RCSB], [https://www.ebi.ac.uk/pdbsum/138l PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=138l ProSAT]</span></td></tr>
</table>
</table>
== Function ==
== Function ==
-
[[https://www.uniprot.org/uniprot/LYS_BPT4 LYS_BPT4]] Helps to release the mature phage particles from the cell wall by breaking down the peptidoglycan.
+
[https://www.uniprot.org/uniprot/ENLYS_BPT4 ENLYS_BPT4] Endolysin with lysozyme activity that degrades host peptidoglycans and participates with the holin and spanin proteins in the sequential events which lead to the programmed host cell lysis releasing the mature viral particles. Once the holin has permeabilized the host cell membrane, the endolysin can reach the periplasm and break down the peptidoglycan layer.<ref>PMID:22389108</ref>
== Evolutionary Conservation ==
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
[[Image:Consurf_key_small.gif|200px|right]]
Line 20: Line 20:
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=138l ConSurf].
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=138l ConSurf].
<div style="clear:both"></div>
<div style="clear:both"></div>
-
<div style="background-color:#fffaf0;">
 
-
== Publication Abstract from PubMed ==
 
-
In an attempt to facilitate crystallization, engineered cysteines were used to promote formation of a 'back-to-back' dimer that occurs in different crystal forms of wild-type and mutant T4 lysozymes. The designed double mutant, N68C/A93C, in which the surface residues Asn68 and Ala93 were replaced by cysteines, formed dimers in solution and crystallized isomorphously to wild-type, but at a much faster rate. Overall, the mutant structure remained very similar to wild-type despite the formation of two intermolecular disulfide bridges. The crystals of cross-linked dimers ahd thermal factors somewhat lower than wild-type, indicating reduced mobility, but did not diffract to noticeably higher resolution. Introduction of the same cross-links was also used to obtain crystals in a different space group of a T4 lysozyme mutant that could not be crystallized previously. The results suggest that the formation of the lysozyme dimer is a critical intermediate in the formation of more than one crystal form and that covalent cross-linking of the intermediate accelerates nucleation and facilitates crystal growth. The disulfide cross-links are located on the 'back' of the molecule and formation of the cross-linked dimer appears to leave the active sites completely unobstructed. Nevertheless, the cross-linked dimer is completely inactive. One explanation for this behavior is that the disulfide bridges prevent hinge-bending motion that may be required for catalysis. Another possibility is that the formation of the dimer increases the overall bulk of the enzyme and prevents its access to the susceptible glycosidic bonds within the cell wall substrate.
 
- 
-
Rapid crystallization of T4 lysozyme by intermolecular disulfide cross-linking.,Heinz DW, Matthews BW Protein Eng. 1994 Mar;7(3):301-7. PMID:8177878<ref>PMID:8177878</ref>
 
- 
-
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
 
-
</div>
 
-
<div class="pdbe-citations 138l" style="background-color:#fffaf0;"></div>
 
==See Also==
==See Also==
Line 36: Line 27:
__TOC__
__TOC__
</StructureSection>
</StructureSection>
-
[[Category: Bpt4]]
+
[[Category: Escherichia virus T4]]
[[Category: Large Structures]]
[[Category: Large Structures]]
-
[[Category: Lysozyme]]
+
[[Category: Heinz DW]]
-
[[Category: Heinz, D W]]
+
[[Category: Matthews BW]]
-
[[Category: Matthews, B W]]
+

Current revision

RAPID CRYSTALLIZATION OF T4 LYSOZYME BY INTERMOLECULAR DISULFIDE CROSSLINKING

PDB ID 138l

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools