1kfs

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Current revision (07:46, 7 February 2024) (edit) (undo)
 
Line 3: Line 3:
<StructureSection load='1kfs' size='340' side='right'caption='[[1kfs]], [[Resolution|resolution]] 2.10&Aring;' scene=''>
<StructureSection load='1kfs' size='340' side='right'caption='[[1kfs]], [[Resolution|resolution]] 2.10&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
-
<table><tr><td colspan='2'>[[1kfs]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/"bacillus_coli"_migula_1895 "bacillus coli" migula 1895]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1KFS OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1KFS FirstGlance]. <br>
+
<table><tr><td colspan='2'>[[1kfs]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Escherichia_coli Escherichia coli]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1KFS OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1KFS FirstGlance]. <br>
-
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr>
+
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.1&#8491;</td></tr>
-
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[https://en.wikipedia.org/wiki/DNA-directed_DNA_polymerase DNA-directed DNA polymerase], with EC number [https://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.7.7.7 2.7.7.7] </span></td></tr>
+
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1kfs FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1kfs OCA], [https://pdbe.org/1kfs PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1kfs RCSB], [https://www.ebi.ac.uk/pdbsum/1kfs PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1kfs ProSAT]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1kfs FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1kfs OCA], [https://pdbe.org/1kfs PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1kfs RCSB], [https://www.ebi.ac.uk/pdbsum/1kfs PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1kfs ProSAT]</span></td></tr>
</table>
</table>
== Function ==
== Function ==
-
[[https://www.uniprot.org/uniprot/DPO1_ECOLI DPO1_ECOLI]] In addition to polymerase activity, this DNA polymerase exhibits 3' to 5' and 5' to 3' exonuclease activity. It is able to utilize nicked circular duplex DNA as a template and can unwind the parental DNA strand from its template.
+
[https://www.uniprot.org/uniprot/DPO1_ECOLI DPO1_ECOLI] In addition to polymerase activity, this DNA polymerase exhibits 3' to 5' and 5' to 3' exonuclease activity. It is able to utilize nicked circular duplex DNA as a template and can unwind the parental DNA strand from its template.
== Evolutionary Conservation ==
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
[[Image:Consurf_key_small.gif|200px|right]]
Line 20: Line 20:
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1kfs ConSurf].
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1kfs ConSurf].
<div style="clear:both"></div>
<div style="clear:both"></div>
-
<div style="background-color:#fffaf0;">
 
-
== Publication Abstract from PubMed ==
 
-
A two-metal-ion catalytic mechanism has previously been proposed for several phosphoryl-transfer enzymes. In order to extend the structural basis of this mechanism, crystal structures of three single-stranded DNA substrates bound to the 3'-5' exonucleolytic active site of the large fragment of DNA polymerase I from Escherichia coli have been elucidated. The first is a 2.1 A resolution structure of a Michaelis complex between the large fragment (or Klenow fragment, KF) and a single-stranded DNA substrate, stabilized by low pH and flash-freezing. The positions and identities of the catalytic metal ions, a Zn2+ at site A and a Mg2+ at site B, have been clearly established. The structural and kinetic consequences of sulfur substitutions in the scissile phosphate have been explored. A complex with the Rp isomer of phosphorothioate DNA, refined at 2.2 A resolution, shows Zn2+ bound to both metal sites and a mispositioning of the substrate and attacking nucleophile. The complex with the Sp phosphorothioate at 2. 3 A resolution reveals that metal ions do not bind in the active site, having been displaced by a bulky sulfur atom. Steady-state kinetic experiments show that catalyzed hydrolysis of the Rp isomer was reduced only about 15-fold, while no enzyme activity could be detected with the Sp phosphorothioate, consistent with the structural observations. Furthermore, Mn2+ could not rescue the activity of the exonuclease on the Sp phosphorothioate. Taken together, these studies confirm and extend the proposed two-metal-ion exonuclease mechanism and provide a structural context to explain the effects of sulfur substitutions on this and other phosphoryl-transfer enzymes. These experiments also suggest that the possibility of metal-ion exclusion be taken into account when interpreting the results of Mn2+ rescue experiments.
 
-
Structural principles for the inhibition of the 3'-5' exonuclease activity of Escherichia coli DNA polymerase I by phosphorothioates.,Brautigam CA, Steitz TA J Mol Biol. 1998 Mar 27;277(2):363-77. PMID:9514742<ref>PMID:9514742</ref>
+
==See Also==
-
 
+
*[[DNA polymerase 3D structures|DNA polymerase 3D structures]]
-
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
+
-
</div>
+
-
<div class="pdbe-citations 1kfs" style="background-color:#fffaf0;"></div>
+
-
== References ==
+
-
<references/>
+
__TOC__
__TOC__
</StructureSection>
</StructureSection>
-
[[Category: Bacillus coli migula 1895]]
+
[[Category: Escherichia coli]]
-
[[Category: DNA-directed DNA polymerase]]
+
[[Category: Large Structures]]
[[Category: Large Structures]]
-
[[Category: Brautigam, C A]]
+
[[Category: Brautigam CA]]
-
[[Category: Steitz, T A]]
+
[[Category: Steitz TA]]
-
[[Category: Exonuclease]]
+
-
[[Category: Phosphorothioate]]
+
-
[[Category: Transferase-dna complex]]
+

Current revision

DNA POLYMERASE I KLENOW FRAGMENT (E.C.2.7.7.7) MUTANT/DNA COMPLEX

PDB ID 1kfs

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools