7oc8

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 4: Line 4:
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>[[7oc8]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Trichoderma_reesei Trichoderma reesei]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=7OC8 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=7OC8 FirstGlance]. <br>
<table><tr><td colspan='2'>[[7oc8]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Trichoderma_reesei Trichoderma reesei]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=7OC8 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=7OC8 FirstGlance]. <br>
-
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=BGC:BETA-D-GLUCOSE'>BGC</scene>, <scene name='pdbligand=CO:COBALT+(II)+ION'>CO</scene>, <scene name='pdbligand=GAL:BETA-D-GALACTOSE'>GAL</scene>, <scene name='pdbligand=NAG:N-ACETYL-D-GLUCOSAMINE'>NAG</scene>, <scene name='pdbligand=NPO:P-NITROPHENOL'>NPO</scene>, <scene name='pdbligand=PCA:PYROGLUTAMIC+ACID'>PCA</scene></td></tr>
+
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.6&#8491;</td></tr>
 +
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=BGC:BETA-D-GLUCOSE'>BGC</scene>, <scene name='pdbligand=CO:COBALT+(II)+ION'>CO</scene>, <scene name='pdbligand=GAL:BETA-D-GALACTOSE'>GAL</scene>, <scene name='pdbligand=NAG:N-ACETYL-D-GLUCOSAMINE'>NAG</scene>, <scene name='pdbligand=NPO:P-NITROPHENOL'>NPO</scene>, <scene name='pdbligand=PCA:PYROGLUTAMIC+ACID'>PCA</scene></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=7oc8 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=7oc8 OCA], [https://pdbe.org/7oc8 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=7oc8 RCSB], [https://www.ebi.ac.uk/pdbsum/7oc8 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=7oc8 ProSAT]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=7oc8 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=7oc8 OCA], [https://pdbe.org/7oc8 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=7oc8 RCSB], [https://www.ebi.ac.uk/pdbsum/7oc8 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=7oc8 ProSAT]</span></td></tr>
</table>
</table>
== Function ==
== Function ==
[https://www.uniprot.org/uniprot/GUX1_HYPJE GUX1_HYPJE] The biological conversion of cellulose to glucose generally requires three types of hydrolytic enzymes: (1) Endoglucanases which cut internal beta-1,4-glucosidic bonds; (2) Exocellobiohydrolases that cut the dissaccharide cellobiose from the non-reducing end of the cellulose polymer chain; (3) Beta-1,4-glucosidases which hydrolyze the cellobiose and other short cello-oligosaccharides to glucose.
[https://www.uniprot.org/uniprot/GUX1_HYPJE GUX1_HYPJE] The biological conversion of cellulose to glucose generally requires three types of hydrolytic enzymes: (1) Endoglucanases which cut internal beta-1,4-glucosidic bonds; (2) Exocellobiohydrolases that cut the dissaccharide cellobiose from the non-reducing end of the cellulose polymer chain; (3) Beta-1,4-glucosidases which hydrolyze the cellobiose and other short cello-oligosaccharides to glucose.
-
<div style="background-color:#fffaf0;">
 
-
== Publication Abstract from PubMed ==
 
-
Cellobiohydrolases (CBHs) in the glycoside hydrolase family 7 (GH7) (EC3.2.1.176) are the major cellulose degrading enzymes both in industrial settings and in the context of carbon cycling in nature. Small carbohydrate conjugates such as p-nitrophenyl-beta-d-cellobioside (pNPC), p-nitrophenyl-beta-d-lactoside (pNPL) and methylumbelliferyl-beta-d-cellobioside have commonly been used in colorimetric and fluorometric assays for analysing activity of these enzymes. Despite the similar nature of these compounds the kinetics of their enzymatic hydrolysis vary greatly between the different compounds as well as among different enzymes within the GH7 family. Through enzyme kinetics, crystallographic structure determination, molecular dynamics simulations, and fluorometric binding studies using the closely related compound o-nitrophenyl-beta-d-cellobioside (oNPC), in this work we examine the different hydrolysis characteristics of these compounds on two model enzymes of this class, TrCel7A from Trichoderma reesei and PcCel7D from Phanerochaete chrysosporium. Protein crystal structures of the E212Q mutant of TrCel7A with pNPC and pNPL, and the wildtype TrCel7A with oNPC, reveal that non-productive binding at the product site is the dominating binding mode for these compounds. Enzyme kinetics results suggest the strength of non-productive binding is a key determinant for the activity characteristics on these substrates, with PcCel7D consistently showing higher turnover rates (kcat ) than TrCel7A, but higher Michaelis-Menten (KM ) constants as well. Furthermore, oNPC turned out to be useful as an active-site probe for fluorometric determination of the dissociation constant for cellobiose on TrCel7A but could not be utilized for the same purpose on PcCel7D, likely due to strong binding to an unknown site outside the active site.
 
- 
-
Enzyme kinetics by GH7 cellobiohydrolases on chromogenic substrates is dictated by non-productive binding: insights from crystal structures and MD simulation.,Haataja T, Gado JE, Nutt A, Anderson NT, Nilsson M, Momeni MH, Isaksson R, Valjamae P, Johansson G, Payne CM, Stahlberg J FEBS J. 2022 Aug 23. doi: 10.1111/febs.16602. PMID:35997626<ref>PMID:35997626</ref>
 
- 
-
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
 
-
</div>
 
-
<div class="pdbe-citations 7oc8" style="background-color:#fffaf0;"></div>
 
==See Also==
==See Also==
*[[Cellobiohydrolase 3D structures|Cellobiohydrolase 3D structures]]
*[[Cellobiohydrolase 3D structures|Cellobiohydrolase 3D structures]]
-
== References ==
 
-
<references/>
 
__TOC__
__TOC__
</StructureSection>
</StructureSection>

Revision as of 07:53, 7 February 2024

Trichoderma reesei Cel7A E212Q mutant in complex with pNPL

PDB ID 7oc8

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools