8cgc
From Proteopedia
(Difference between revisions)
| Line 4: | Line 4: | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[8cgc]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=8CGC OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=8CGC FirstGlance]. <br> | <table><tr><td colspan='2'>[[8cgc]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=8CGC OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=8CGC FirstGlance]. <br> | ||
| - | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=LMR:(2S)-2-HYDROXYBUTANEDIOIC+ACID'>LMR</scene>, <scene name='pdbligand=UIK:[4-[4-[methyl-[(3-methylphenyl)methyl]amino]-7~{H}-pyrrolo[2,3-d]pyrimidin-6-yl]phenyl]methanol'>UIK</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.925Å</td></tr> |
| + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=LMR:(2S)-2-HYDROXYBUTANEDIOIC+ACID'>LMR</scene>, <scene name='pdbligand=UIK:[4-[4-[methyl-[(3-methylphenyl)methyl]amino]-7~{H}-pyrrolo[2,3-d]pyrimidin-6-yl]phenyl]methanol'>UIK</scene></td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=8cgc FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=8cgc OCA], [https://pdbe.org/8cgc PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=8cgc RCSB], [https://www.ebi.ac.uk/pdbsum/8cgc PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=8cgc ProSAT]</span></td></tr> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=8cgc FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=8cgc OCA], [https://pdbe.org/8cgc PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=8cgc RCSB], [https://www.ebi.ac.uk/pdbsum/8cgc PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=8cgc ProSAT]</span></td></tr> | ||
</table> | </table> | ||
| Line 11: | Line 12: | ||
== Function == | == Function == | ||
[https://www.uniprot.org/uniprot/CSF1R_HUMAN CSF1R_HUMAN] Tyrosine-protein kinase that acts as cell-surface receptor for CSF1 and IL34 and plays an essential role in the regulation of survival, proliferation and differentiation of hematopoietic precursor cells, especially mononuclear phagocytes, such as macrophages and monocytes. Promotes the release of proinflammatory chemokines in response to IL34 and CSF1, and thereby plays an important role in innate immunity and in inflammatory processes. Plays an important role in the regulation of osteoclast proliferation and differentiation, the regulation of bone resorption, and is required for normal bone and tooth development. Required for normal male and female fertility, and for normal development of milk ducts and acinar structures in the mammary gland during pregnancy. Promotes reorganization of the actin cytoskeleton, regulates formation of membrane ruffles, cell adhesion and cell migration, and promotes cancer cell invasion. Activates several signaling pathways in response to ligand binding. Phosphorylates PIK3R1, PLCG2, GRB2, SLA2 and CBL. Activation of PLCG2 leads to the production of the cellular signaling molecules diacylglycerol and inositol 1,4,5-trisphosphate, that then lead to the activation of protein kinase C family members, especially PRKCD. Phosphorylation of PIK3R1, the regulatory subunit of phosphatidylinositol 3-kinase, leads to activation of the AKT1 signaling pathway. Activated CSF1R also mediates activation of the MAP kinases MAPK1/ERK2 and/or MAPK3/ERK1, and of the SRC family kinases SRC, FYN and YES1. Activated CSF1R transmits signals both via proteins that directly interact with phosphorylated tyrosine residues in its intracellular domain, or via adapter proteins, such as GRB2. Promotes activation of STAT family members STAT3, STAT5A and/or STAT5B. Promotes tyrosine phosphorylation of SHC1 and INPP5D/SHIP-1. Receptor signaling is down-regulated by protein phosphatases, such as INPP5D/SHIP-1, that dephosphorylate the receptor and its downstream effectors, and by rapid internalization of the activated receptor.<ref>PMID:7683918</ref> <ref>PMID:12882960</ref> <ref>PMID:15117969</ref> <ref>PMID:16648572</ref> <ref>PMID:17121910</ref> <ref>PMID:16170366</ref> <ref>PMID:18467591</ref> <ref>PMID:18814279</ref> <ref>PMID:19934330</ref> <ref>PMID:20489731</ref> <ref>PMID:20829061</ref> <ref>PMID:20504948</ref> <ref>PMID:16337366</ref> <ref>PMID:19193011</ref> | [https://www.uniprot.org/uniprot/CSF1R_HUMAN CSF1R_HUMAN] Tyrosine-protein kinase that acts as cell-surface receptor for CSF1 and IL34 and plays an essential role in the regulation of survival, proliferation and differentiation of hematopoietic precursor cells, especially mononuclear phagocytes, such as macrophages and monocytes. Promotes the release of proinflammatory chemokines in response to IL34 and CSF1, and thereby plays an important role in innate immunity and in inflammatory processes. Plays an important role in the regulation of osteoclast proliferation and differentiation, the regulation of bone resorption, and is required for normal bone and tooth development. Required for normal male and female fertility, and for normal development of milk ducts and acinar structures in the mammary gland during pregnancy. Promotes reorganization of the actin cytoskeleton, regulates formation of membrane ruffles, cell adhesion and cell migration, and promotes cancer cell invasion. Activates several signaling pathways in response to ligand binding. Phosphorylates PIK3R1, PLCG2, GRB2, SLA2 and CBL. Activation of PLCG2 leads to the production of the cellular signaling molecules diacylglycerol and inositol 1,4,5-trisphosphate, that then lead to the activation of protein kinase C family members, especially PRKCD. Phosphorylation of PIK3R1, the regulatory subunit of phosphatidylinositol 3-kinase, leads to activation of the AKT1 signaling pathway. Activated CSF1R also mediates activation of the MAP kinases MAPK1/ERK2 and/or MAPK3/ERK1, and of the SRC family kinases SRC, FYN and YES1. Activated CSF1R transmits signals both via proteins that directly interact with phosphorylated tyrosine residues in its intracellular domain, or via adapter proteins, such as GRB2. Promotes activation of STAT family members STAT3, STAT5A and/or STAT5B. Promotes tyrosine phosphorylation of SHC1 and INPP5D/SHIP-1. Receptor signaling is down-regulated by protein phosphatases, such as INPP5D/SHIP-1, that dephosphorylate the receptor and its downstream effectors, and by rapid internalization of the activated receptor.<ref>PMID:7683918</ref> <ref>PMID:12882960</ref> <ref>PMID:15117969</ref> <ref>PMID:16648572</ref> <ref>PMID:17121910</ref> <ref>PMID:16170366</ref> <ref>PMID:18467591</ref> <ref>PMID:18814279</ref> <ref>PMID:19934330</ref> <ref>PMID:20489731</ref> <ref>PMID:20829061</ref> <ref>PMID:20504948</ref> <ref>PMID:16337366</ref> <ref>PMID:19193011</ref> | ||
| - | <div style="background-color:#fffaf0;"> | ||
| - | == Publication Abstract from PubMed == | ||
| - | Colony-stimulating factor-1 receptor (CSF1R) is a receptor tyrosine kinase that controls the differentiation and maintenance of most tissue-resident macrophages, and the inhibition of CSF1R has been suggested as a possible therapy for a range of human disorders. Herein, we present the synthesis, development, and structure-activity relationship of a series of highly selective pyrrolo[2,3-d]pyrimidines, showing subnanomolar enzymatic inhibition of this receptor and with excellent selectivity toward other kinases in the platelet-derived growth factor receptor (PDGFR) family. The crystal structure of the protein and 23 revealed that the binding conformation of the protein is DFG-out-like. The most promising compounds in this series were profiled for cellular potency and subjected to pharmacokinetic profiling and in vivo stability, indicating that this compound class could be relevant in a potential disease setting. Additionally, these compounds inhibited primarily the autoinhibited form of the receptor, contrasting the behavior of pexidartinib, which could explain the exquisite selectivity of these structures. | ||
| - | |||
| - | Synthesis and Development of Highly Selective Pyrrolo[2,3-d]pyrimidine CSF1R Inhibitors Targeting the Autoinhibited Form.,Aarhus TI, Bjornstad F, Wolowczyk C, Larsen KU, Rognstad L, Leithaug T, Unger A, Habenberger P, Wolf A, Bjorkoy G, Pridans C, Eickhoff J, Klebl B, Hoff BH, Sundby E J Med Chem. 2023 May 16. doi: 10.1021/acs.jmedchem.3c00428. PMID:37191268<ref>PMID:37191268</ref> | ||
| - | |||
| - | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
| - | </div> | ||
| - | <div class="pdbe-citations 8cgc" style="background-color:#fffaf0;"></div> | ||
== References == | == References == | ||
<references/> | <references/> | ||
Current revision
Structure of CSF1R in complex with a pyrollopyrimidine (compound 23)
| |||||||||||
Categories: Homo sapiens | Large Structures | Aarhus TI | Bjorkoy G | Bjornstad F | Eickhoff J | Habenberger P | Hoff BH | Klebl B | Larsen KU | Leithaug T | Pridans C | Rognstad L | Sundby E | Unger A | Wolff A | Wolowczyk C
