1sx4

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Current revision (08:34, 14 February 2024) (edit) (undo)
 
Line 3: Line 3:
<StructureSection load='1sx4' size='340' side='right'caption='[[1sx4]], [[Resolution|resolution]] 3.00&Aring;' scene=''>
<StructureSection load='1sx4' size='340' side='right'caption='[[1sx4]], [[Resolution|resolution]] 3.00&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
-
<table><tr><td colspan='2'>[[1sx4]] is a 21 chain structure with sequence from [http://en.wikipedia.org/wiki/"bacillus_coli"_migula_1895 "bacillus coli" migula 1895]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1SX4 OCA]. For a <b>guided tour on the structure components</b> use [http://proteopedia.org/fgij/fg.htm?mol=1SX4 FirstGlance]. <br>
+
<table><tr><td colspan='2'>[[1sx4]] is a 21 chain structure with sequence from [https://en.wikipedia.org/wiki/Escherichia_coli Escherichia coli]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1SX4 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1SX4 FirstGlance]. <br>
-
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ADP:ADENOSINE-5-DIPHOSPHATE'>ADP</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr>
+
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 3&#8491;</td></tr>
-
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat"><div style='overflow: auto; max-height: 3em;'>[[1aon|1aon]], [[1pf9|1pf9]]</div></td></tr>
+
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ADP:ADENOSINE-5-DIPHOSPHATE'>ADP</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr>
-
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">GROL, GROEL, MOPA, B4143, C5227, Z5748, ECS5124, SF4297, S4564 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=562 "Bacillus coli" Migula 1895]), GROS, GROES, MOPB, B4142, C5226, Z5747, ECS5123, SF4296, S4563 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=562 "Bacillus coli" Migula 1895])</td></tr>
+
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1sx4 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1sx4 OCA], [https://pdbe.org/1sx4 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1sx4 RCSB], [https://www.ebi.ac.uk/pdbsum/1sx4 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1sx4 ProSAT]</span></td></tr>
-
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://proteopedia.org/fgij/fg.htm?mol=1sx4 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1sx4 OCA], [http://pdbe.org/1sx4 PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=1sx4 RCSB], [http://www.ebi.ac.uk/pdbsum/1sx4 PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=1sx4 ProSAT]</span></td></tr>
+
</table>
</table>
== Function ==
== Function ==
-
[[http://www.uniprot.org/uniprot/CH60_ECOLI CH60_ECOLI]] Prevents misfolding and promotes the refolding and proper assembly of unfolded polypeptides generated under stress conditions.[HAMAP-Rule:MF_00600] Essential for the growth of the bacteria and the assembly of several bacteriophages. Also plays a role in coupling between replication of the F plasmid and cell division of the cell.[HAMAP-Rule:MF_00600] [[http://www.uniprot.org/uniprot/CH10_ECOLI CH10_ECOLI]] Binds to Cpn60 in the presence of Mg-ATP and suppresses the ATPase activity of the latter.[HAMAP-Rule:MF_00580]
+
[https://www.uniprot.org/uniprot/CH60_ECOLI CH60_ECOLI] Prevents misfolding and promotes the refolding and proper assembly of unfolded polypeptides generated under stress conditions.[HAMAP-Rule:MF_00600] Essential for the growth of the bacteria and the assembly of several bacteriophages. Also plays a role in coupling between replication of the F plasmid and cell division of the cell.[HAMAP-Rule:MF_00600]
== Evolutionary Conservation ==
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
[[Image:Consurf_key_small.gif|200px|right]]
Line 21: Line 20:
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1sx4 ConSurf].
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1sx4 ConSurf].
<div style="clear:both"></div>
<div style="clear:both"></div>
-
<div style="background-color:#fffaf0;">
 
-
== Publication Abstract from PubMed ==
 
-
Large rigid-body domain movements are critical to GroEL-mediated protein folding, especially apical domain elevation and twist associated with the formation of a folding chamber upon binding ATP and co-chaperonin GroES. Here, we have modeled the anisotropic displacements of GroEL domains from various crystallized states, unliganded GroEL, ATPgammaS-bound, ADP-AlFx/GroES-bound, and ADP/GroES bound, using translation-libration-screw (TLS) analysis. Remarkably, the TLS results show that the inherent motions of unliganded GroEL, a polypeptide-accepting state, are biased along the transition pathway that leads to the folding-active state. In the ADP-AlFx/GroES-bound folding-active state the dynamic modes of the apical domains become reoriented and coupled to the motions of bound GroES. The ADP/GroES complex exhibits these same motions, but they are increased in magnitude, potentially reflecting the decreased stability of the complex after nucleotide hydrolysis. Our results have allowed the visualization of the anisotropic molecular motions that link the static conformations previously observed by X-ray crystallography. Application of the same analyses to other macromolecules where rigid body motions occur may give insight into the large scale dynamics critical for function and thus has the potential to extend our fundamental understanding of molecular machines.
 
- 
-
Exploring the structural dynamics of the E.coli chaperonin GroEL using translation-libration-screw crystallographic refinement of intermediate states.,Chaudhry C, Horwich AL, Brunger AT, Adams PD J Mol Biol. 2004 Sep 3;342(1):229-45. PMID:15313620<ref>PMID:15313620</ref>
 
- 
-
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
 
-
</div>
 
-
<div class="pdbe-citations 1sx4" style="background-color:#fffaf0;"></div>
 
==See Also==
==See Also==
*[[Chaperonin 3D structures|Chaperonin 3D structures]]
*[[Chaperonin 3D structures|Chaperonin 3D structures]]
-
== References ==
 
-
<references/>
 
__TOC__
__TOC__
</StructureSection>
</StructureSection>
-
[[Category: Bacillus coli migula 1895]]
+
[[Category: Escherichia coli]]
[[Category: Large Structures]]
[[Category: Large Structures]]
-
[[Category: Adams, P D]]
+
[[Category: Adams PD]]
-
[[Category: Brunger, A T]]
+
[[Category: Brunger AT]]
-
[[Category: Chaudhry, C]]
+
[[Category: Chaudhry C]]
-
[[Category: Horwich, A L]]
+
[[Category: Horwich AL]]
-
[[Category: Chaperone]]
+
-
[[Category: Molecular chaperone]]
+
-
[[Category: Protein folding]]
+

Current revision

GroEL-GroES-ADP7

PDB ID 1sx4

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools