1te0
From Proteopedia
(Difference between revisions)
Line 3: | Line 3: | ||
<StructureSection load='1te0' size='340' side='right'caption='[[1te0]], [[Resolution|resolution]] 2.20Å' scene=''> | <StructureSection load='1te0' size='340' side='right'caption='[[1te0]], [[Resolution|resolution]] 2.20Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
- | <table><tr><td colspan='2'>[[1te0]] is a 2 chain structure with sequence from [ | + | <table><tr><td colspan='2'>[[1te0]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Escherichia_coli Escherichia coli]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1TE0 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1TE0 FirstGlance]. <br> |
- | </td></tr><tr id=' | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.2Å</td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[ | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1te0 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1te0 OCA], [https://pdbe.org/1te0 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1te0 RCSB], [https://www.ebi.ac.uk/pdbsum/1te0 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1te0 ProSAT]</span></td></tr> |
</table> | </table> | ||
== Function == | == Function == | ||
- | [ | + | [https://www.uniprot.org/uniprot/DEGS_ECOLI DEGS_ECOLI] When heat shock or other environmental stresses disrupt protein folding in the periplasm, DegS senses the accumulation of unassembled outer membrane porins (OMPs) and then initiates RseA (anti sigma-E factor) degradation by cleaving it in its periplasmic domain, making it an attractive substrate for subsequent cleavage by RseP. This cascade that ultimately leads to the sigma-E-driven expression of a variety of factors dealing with folding stress in the periplasm and OMP assembly.<ref>PMID:12183369</ref> <ref>PMID:19695325</ref> |
== Evolutionary Conservation == | == Evolutionary Conservation == | ||
[[Image:Consurf_key_small.gif|200px|right]] | [[Image:Consurf_key_small.gif|200px|right]] | ||
Line 19: | Line 19: | ||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1te0 ConSurf]. | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1te0 ConSurf]. | ||
<div style="clear:both"></div> | <div style="clear:both"></div> | ||
- | <div style="background-color:#fffaf0;"> | ||
- | == Publication Abstract from PubMed == | ||
- | Regulated proteolysis is a key event in transmembrane signalling between intracellular compartments. In Escherichia coli the membrane-bound protease DegS has been identified as the periplasmic stress sensor for unfolded outer membrane proteins (OMPs). DegS inititates a proteolytic cascade resulting in the release of sigmaE the transcription factor of periplasmic genes. The crystal structure of DegS protease reported at 2.2 A resolution reveals a trimeric complex with the monomeric protease domain in an inhibited state followed by the inhibitory PDZ domain. Noteably, domain architecture and communication of DegS are remarkably to homologous proteins known to date. Here the domain interface is mechanically locked by three intradomain salt bridges. Co-crystallisation trials in the presence of a 10-residue activating peptide did not result in significant structural intradomain shifts nor distortions in the crystal packing. These observations imply a mode of activation indicative of peptide-induced structural shifts imposed to the protease domain rather than disturbing the PDZ-protease interface. | ||
- | |||
- | Structural analysis of DegS, a stress sensor of the bacterial periplasm.,Zeth K FEBS Lett. 2004 Jul 2;569(1-3):351-8. PMID:15225661<ref>PMID:15225661</ref> | ||
- | |||
- | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
- | </div> | ||
- | <div class="pdbe-citations 1te0" style="background-color:#fffaf0;"></div> | ||
== References == | == References == | ||
<references/> | <references/> | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> | ||
- | [[Category: | + | [[Category: Escherichia coli]] |
[[Category: Large Structures]] | [[Category: Large Structures]] | ||
- | [[Category: Ravelli | + | [[Category: Ravelli RBG]] |
- | [[Category: Zeth | + | [[Category: Zeth K]] |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + |
Current revision
Structural analysis of DegS, a stress sensor of the bacterial periplasm
|