1ydi

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Current revision (08:56, 14 February 2024) (edit) (undo)
 
Line 3: Line 3:
<StructureSection load='1ydi' size='340' side='right'caption='[[1ydi]], [[Resolution|resolution]] 1.80&Aring;' scene=''>
<StructureSection load='1ydi' size='340' side='right'caption='[[1ydi]], [[Resolution|resolution]] 1.80&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
-
<table><tr><td colspan='2'>[[1ydi]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Human Human]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1YDI OCA]. For a <b>guided tour on the structure components</b> use [http://proteopedia.org/fgij/fg.htm?mol=1YDI FirstGlance]. <br>
+
<table><tr><td colspan='2'>[[1ydi]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1YDI OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1YDI FirstGlance]. <br>
-
</td></tr><tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">ACTN4 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN])</td></tr>
+
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.8&#8491;</td></tr>
-
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://proteopedia.org/fgij/fg.htm?mol=1ydi FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1ydi OCA], [http://pdbe.org/1ydi PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=1ydi RCSB], [http://www.ebi.ac.uk/pdbsum/1ydi PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=1ydi ProSAT]</span></td></tr>
+
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1ydi FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1ydi OCA], [https://pdbe.org/1ydi PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1ydi RCSB], [https://www.ebi.ac.uk/pdbsum/1ydi PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1ydi ProSAT]</span></td></tr>
</table>
</table>
== Disease ==
== Disease ==
-
[[http://www.uniprot.org/uniprot/VINC_HUMAN VINC_HUMAN]] Defects in VCL are the cause of cardiomyopathy dilated type 1W (CMD1W) [MIM:[http://omim.org/entry/611407 611407]]. Dilated cardiomyopathy is a disorder characterized by ventricular dilation and impaired systolic function, resulting in congestive heart failure and arrhythmia. Patients are at risk of premature death.<ref>PMID:11815424</ref> <ref>PMID:16236538</ref> Defects in VCL are the cause of familial hypertrophic cardiomyopathy type 15 (CMH15) [MIM:[http://omim.org/entry/613255 613255]]. It is a hereditary heart disorder characterized by ventricular hypertrophy, which is usually asymmetric and often involves the interventricular septum. The symptoms include dyspnea, syncope, collapse, palpitations, and chest pain. They can be readily provoked by exercise. The disorder has inter- and intrafamilial variability ranging from benign to malignant forms with high risk of cardiac failure and sudden cardiac death.<ref>PMID:16712796</ref> [[http://www.uniprot.org/uniprot/ACTN4_HUMAN ACTN4_HUMAN]] Defects in ACTN4 are the cause of focal segmental glomerulosclerosis type 1 (FSGS1) [MIM:[http://omim.org/entry/603278 603278]]. A renal pathology defined by the presence of segmental sclerosis in glomeruli and resulting in proteinuria, reduced glomerular filtration rate and edema. Renal insufficiency often progresses to end-stage renal disease, a highly morbid state requiring either dialysis therapy or kidney transplantation.<ref>PMID:10700177</ref>
+
[https://www.uniprot.org/uniprot/VINC_HUMAN VINC_HUMAN] Defects in VCL are the cause of cardiomyopathy dilated type 1W (CMD1W) [MIM:[https://omim.org/entry/611407 611407]. Dilated cardiomyopathy is a disorder characterized by ventricular dilation and impaired systolic function, resulting in congestive heart failure and arrhythmia. Patients are at risk of premature death.<ref>PMID:11815424</ref> <ref>PMID:16236538</ref> Defects in VCL are the cause of familial hypertrophic cardiomyopathy type 15 (CMH15) [MIM:[https://omim.org/entry/613255 613255]. It is a hereditary heart disorder characterized by ventricular hypertrophy, which is usually asymmetric and often involves the interventricular septum. The symptoms include dyspnea, syncope, collapse, palpitations, and chest pain. They can be readily provoked by exercise. The disorder has inter- and intrafamilial variability ranging from benign to malignant forms with high risk of cardiac failure and sudden cardiac death.<ref>PMID:16712796</ref>
== Function ==
== Function ==
-
[[http://www.uniprot.org/uniprot/VINC_HUMAN VINC_HUMAN]] Actin filament (F-actin)-binding protein involved in cell-matrix adhesion and cell-cell adhesion. Regulates cell-surface E-cadherin expression and potentiates mechanosensing by the E-cadherin complex. May also play important roles in cell morphology and locomotion.<ref>PMID:20484056</ref> [[http://www.uniprot.org/uniprot/ACTN4_HUMAN ACTN4_HUMAN]] F-actin cross-linking protein which is thought to anchor actin to a variety of intracellular structures. This is a bundling protein. Probably involved in vesicular trafficking via its association with the CART complex. The CART complex is necessary for efficient transferrin receptor recycling but not for EGFR degradation.
+
[https://www.uniprot.org/uniprot/VINC_HUMAN VINC_HUMAN] Actin filament (F-actin)-binding protein involved in cell-matrix adhesion and cell-cell adhesion. Regulates cell-surface E-cadherin expression and potentiates mechanosensing by the E-cadherin complex. May also play important roles in cell morphology and locomotion.<ref>PMID:20484056</ref>
== Evolutionary Conservation ==
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
[[Image:Consurf_key_small.gif|200px|right]]
Line 21: Line 21:
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1ydi ConSurf].
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1ydi ConSurf].
<div style="clear:both"></div>
<div style="clear:both"></div>
-
<div style="background-color:#fffaf0;">
 
-
== Publication Abstract from PubMed ==
 
-
Alpha-actinin and vinculin orchestrate reorganization of the actin cytoskeleton following the formation of adhesion junctions. alpha-Actinin interacts with vinculin through the binding of an alpha-helix (alphaVBS) present within the R4 spectrin repeat of its central rod domain to vinculin's N-terminal seven-helical bundle domain (Vh1). The Vh1:alphaVBS structure suggests that alphaVBS first unravels from its buried location in the triple-helical R4 repeat to allow it to bind to vinculin. alphaVBS binding then induces novel conformational changes in the N-terminal helical bundle of Vh1, which disrupt its intramolecular association with vinculin's tail domain and which differ from the alterations in Vh1 provoked by the binding of talin. Surprisingly, alphaVBS binds to Vh1 in an inverted orientation compared to the binding of talin's VBSs to vinculin. Importantly, the binding of alphaVBS and talin's VBSs to vinculin's Vh1 domain appear to also trigger distinct conformational changes in full-length vinculin, opening up distant regions that are buried in the inactive molecule. The data suggest a model where vinculin's Vh1 domain acts as a molecular switch that undergoes distinct structural changes provoked by talin and alpha-actinin binding in focal adhesions versus adherens junctions, respectively.
 
- 
-
Structural dynamics of alpha-actinin-vinculin interactions.,Bois PR, Borgon RA, Vonrhein C, Izard T Mol Cell Biol. 2005 Jul;25(14):6112-22. PMID:15988023<ref>PMID:15988023</ref>
 
- 
-
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
 
-
</div>
 
-
<div class="pdbe-citations 1ydi" style="background-color:#fffaf0;"></div>
 
==See Also==
==See Also==
Line 38: Line 29:
__TOC__
__TOC__
</StructureSection>
</StructureSection>
-
[[Category: Human]]
+
[[Category: Homo sapiens]]
[[Category: Large Structures]]
[[Category: Large Structures]]
-
[[Category: Izard, T]]
+
[[Category: Izard T]]
-
[[Category: Cell adhesion]]
+
-
[[Category: Structural protein]]
+

Current revision

Human Vinculin Head Domain (VH1, 1-258) in Complex with Human Alpha-Actinin's Vinculin-Binding Site (Residues 731-760)

PDB ID 1ydi

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools