2a3i
From Proteopedia
(Difference between revisions)
Line 3: | Line 3: | ||
<StructureSection load='2a3i' size='340' side='right'caption='[[2a3i]], [[Resolution|resolution]] 1.95Å' scene=''> | <StructureSection load='2a3i' size='340' side='right'caption='[[2a3i]], [[Resolution|resolution]] 1.95Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
- | <table><tr><td colspan='2'>[[2a3i]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/ | + | <table><tr><td colspan='2'>[[2a3i]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2A3I OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2A3I FirstGlance]. <br> |
- | </td></tr><tr id=' | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.95Å</td></tr> |
- | <tr id=' | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=C0R:CORTICOSTERONE'>C0R</scene></td></tr> |
- | + | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2a3i FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2a3i OCA], [https://pdbe.org/2a3i PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2a3i RCSB], [https://www.ebi.ac.uk/pdbsum/2a3i PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2a3i ProSAT]</span></td></tr> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2a3i FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2a3i OCA], [https://pdbe.org/2a3i PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2a3i RCSB], [https://www.ebi.ac.uk/pdbsum/2a3i PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2a3i ProSAT]</span></td></tr> | ||
</table> | </table> | ||
== Disease == | == Disease == | ||
- | + | [https://www.uniprot.org/uniprot/MCR_HUMAN MCR_HUMAN] Defects in NR3C2 are a cause of pseudohypoaldosteronism 1, autosomal dominant (PHA1A) [MIM:[https://omim.org/entry/177735 177735]. A salt wasting disease resulting from target organ unresponsiveness to mineralocorticoids. PHA1A is a mild form characterized by target organ defects confined to kidney. Patients may present with neonatal renal salt wasting with hyperkalaemic acidosis despite high aldosterone levels. These patients improve with age and usually become asymptomatic without treatment.<ref>PMID:9662404</ref> <ref>PMID:11134129</ref> <ref>PMID:12788847</ref> <ref>PMID:16954160</ref> <ref>PMID:16972228</ref> Defects in NR3C2 are a cause of early-onset hypertension with severe exacerbation in pregnancy (EOHSEP) [MIM:[https://omim.org/entry/605115 605115]. Inheritance is autosomal dominant. The disease is characterized by the onset of severe hypertension before the age of 20, and by suppression of aldosterone secretion.<ref>PMID:9662404</ref> <ref>PMID:15967794</ref> <ref>PMID:15908963</ref> <ref>PMID:10884226</ref> | |
== Function == | == Function == | ||
- | + | [https://www.uniprot.org/uniprot/MCR_HUMAN MCR_HUMAN] Receptor for both mineralocorticoids (MC) such as aldosterone and glucocorticoids (GC) such as corticosterone or cortisol. Binds to mineralocorticoid response elements (MRE) and transactivates target genes. The effect of MC is to increase ion and water transport and thus raise extracellular fluid volume and blood pressure and lower potassium levels.<ref>PMID:3037703</ref> | |
== Evolutionary Conservation == | == Evolutionary Conservation == | ||
[[Image:Consurf_key_small.gif|200px|right]] | [[Image:Consurf_key_small.gif|200px|right]] | ||
Line 23: | Line 22: | ||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=2a3i ConSurf]. | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=2a3i ConSurf]. | ||
<div style="clear:both"></div> | <div style="clear:both"></div> | ||
- | <div style="background-color:#fffaf0;"> | ||
- | == Publication Abstract from PubMed == | ||
- | Mineralocorticoid receptor (MR) controls sodium homeostasis and blood pressure through hormone binding and coactivator recruitment. Here, we report a 1.95 A crystal structure of the MR ligand binding domain containing a single C808S mutation bound to corticosterone and the fourth LXXLL motif of steroid receptor coactivator-1 (SRC1-4). Through a combination of biochemical and structural analyses, we demonstrate that SRC1-4 is the most potent MR binding motif and mutations that disrupt the MR/SRC1-4 interactions abolish the ability of the full-length SRC1 to coactivate MR. The structure also reveals a compact steroid binding pocket with a unique topology that is primarily defined by key residues of helices 6 and 7. Mutations swapping a single residue at position 848 from helix H7 between MR and glucocorticoid receptor (GR) switch their hormone specificity. Together, these findings provide critical insights into the molecular basis of hormone binding and coactivator recognition by MR and related steroid receptors. | ||
- | |||
- | Structural and biochemical mechanisms for the specificity of hormone binding and coactivator assembly by mineralocorticoid receptor.,Li Y, Suino K, Daugherty J, Xu HE Mol Cell. 2005 Aug 5;19(3):367-80. PMID:16061183<ref>PMID:16061183</ref> | ||
- | |||
- | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
- | </div> | ||
- | <div class="pdbe-citations 2a3i" style="background-color:#fffaf0;"></div> | ||
==See Also== | ==See Also== | ||
Line 39: | Line 29: | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> | ||
- | [[Category: | + | [[Category: Homo sapiens]] |
- | + | ||
[[Category: Large Structures]] | [[Category: Large Structures]] | ||
- | [[Category: Daugherty | + | [[Category: Daugherty J]] |
- | [[Category: Li | + | [[Category: Li Y]] |
- | [[Category: Suino | + | [[Category: Suino K]] |
- | [[Category: Xu | + | [[Category: Xu HE]] |
- | + | ||
- | + |
Current revision
Structural and Biochemical Mechanisms for the Specificity of Hormone Binding and Coactivator Assembly by Mineralocorticoid Receptor
|
Categories: Homo sapiens | Large Structures | Daugherty J | Li Y | Suino K | Xu HE