2bgu

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Current revision (09:17, 14 February 2024) (edit) (undo)
 
Line 10: Line 10:
== Function ==
== Function ==
[https://www.uniprot.org/uniprot/GSTB_BPT4 GSTB_BPT4] Catalyzes the transfer of glucose (Glc) from uridine diphosphoglucose (UDP-Glc) to 5-hydroxymethylcytosine (5-HMC) in double-stranded DNA. Is involved in a DNA modification process to protect the phage genome against its own nucleases and the host restriction endonuclease system.
[https://www.uniprot.org/uniprot/GSTB_BPT4 GSTB_BPT4] Catalyzes the transfer of glucose (Glc) from uridine diphosphoglucose (UDP-Glc) to 5-hydroxymethylcytosine (5-HMC) in double-stranded DNA. Is involved in a DNA modification process to protect the phage genome against its own nucleases and the host restriction endonuclease system.
-
<div style="background-color:#fffaf0;">
 
-
== Publication Abstract from PubMed ==
 
-
Bacteriophage T4 beta-glucosyltransferase (EC 2.4.1.27) catalyses the transfer of glucose from uridine diphosphoglucose to hydroxymethyl groups of modified cytosine bases in T4 duplex DNA forming beta-glycosidic linkages. The enzyme forms part of a phage DNA protection system. We have solved and refined the crystal structure of recombinant beta-glucosyltransferase to 2.2 A resolution in the presence and absence of the substrate, uridine diphosphoglucose. The structure comprises two domains of similar topology, each reminiscent of a nucleotide binding fold. The two domains are separated by a central cleft which generates a concave surface along one side of the molecule. The substrate-bound complex reveals only clear electron density for the uridine diphosphate portion of the substrate. The UDPG is bound in a pocket at the bottom of the cleft between the two domains and makes extensive hydrogen bonding contacts with residues of the C-terminal domain only. The domains undergo a rigid body conformational change causing the structure to adopt a more closed conformation upon ligand binding. The movement of the domains is facilitated by a hinge region between residues 166 and 172. Electrostatic surface potential calculations reveal a large positive potential along the concave surface of the structure, suggesting a possible site for duplex DNA interaction.
 
- 
-
Crystal structure of the DNA modifying enzyme beta-glucosyltransferase in the presence and absence of the substrate uridine diphosphoglucose.,Vrielink A, Ruger W, Driessen HP, Freemont PS EMBO J. 1994 Aug 1;13(15):3413-22. PMID:8062817<ref>PMID:8062817</ref>
 
- 
-
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
 
-
</div>
 
-
<div class="pdbe-citations 2bgu" style="background-color:#fffaf0;"></div>
 
-
== References ==
 
-
<references/>
 
__TOC__
__TOC__
</StructureSection>
</StructureSection>

Current revision

CRYSTAL STRUCTURE OF THE DNA MODIFYING ENZYME BETA-GLUCOSYLTRANSFERASE IN THE PRESENCE AND ABSENCE OF THE SUBSTRATE URIDINE DIPHOSPHOGLUCOSE

PDB ID 2bgu

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools