2g54
From Proteopedia
(Difference between revisions)
Line 3: | Line 3: | ||
<StructureSection load='2g54' size='340' side='right'caption='[[2g54]], [[Resolution|resolution]] 2.25Å' scene=''> | <StructureSection load='2g54' size='340' side='right'caption='[[2g54]], [[Resolution|resolution]] 2.25Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
- | <table><tr><td colspan='2'>[[2g54]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/ | + | <table><tr><td colspan='2'>[[2g54]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2G54 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2G54 FirstGlance]. <br> |
- | </td></tr><tr id=' | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.25Å</td></tr> |
- | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=DIO:1,4-DIETHYLENE+DIOXIDE'>DIO</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr> | |
- | <tr id=' | + | |
- | + | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2g54 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2g54 OCA], [https://pdbe.org/2g54 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2g54 RCSB], [https://www.ebi.ac.uk/pdbsum/2g54 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2g54 ProSAT]</span></td></tr> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2g54 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2g54 OCA], [https://pdbe.org/2g54 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2g54 RCSB], [https://www.ebi.ac.uk/pdbsum/2g54 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2g54 ProSAT]</span></td></tr> | ||
</table> | </table> | ||
- | == Disease == | ||
- | [[https://www.uniprot.org/uniprot/INS_HUMAN INS_HUMAN]] Defects in INS are the cause of familial hyperproinsulinemia (FHPRI) [MIM:[https://omim.org/entry/176730 176730]].<ref>PMID:3470784</ref> <ref>PMID:2196279</ref> <ref>PMID:4019786</ref> <ref>PMID:1601997</ref> Defects in INS are a cause of diabetes mellitus insulin-dependent type 2 (IDDM2) [MIM:[https://omim.org/entry/125852 125852]]. IDDM2 is a multifactorial disorder of glucose homeostasis that is characterized by susceptibility to ketoacidosis in the absence of insulin therapy. Clinical fetaures are polydipsia, polyphagia and polyuria which result from hyperglycemia-induced osmotic diuresis and secondary thirst. These derangements result in long-term complications that affect the eyes, kidneys, nerves, and blood vessels.<ref>PMID:18192540</ref> Defects in INS are a cause of diabetes mellitus permanent neonatal (PNDM) [MIM:[https://omim.org/entry/606176 606176]]. PNDM is a rare form of diabetes distinct from childhood-onset autoimmune diabetes mellitus type 1. It is characterized by insulin-requiring hyperglycemia that is diagnosed within the first months of life. Permanent neonatal diabetes requires lifelong therapy.<ref>PMID:17855560</ref> <ref>PMID:18162506</ref> Defects in INS are a cause of maturity-onset diabetes of the young type 10 (MODY10) [MIM:[https://omim.org/entry/613370 613370]]. MODY10 is a form of diabetes that is characterized by an autosomal dominant mode of inheritance, onset in childhood or early adulthood (usually before 25 years of age), a primary defect in insulin secretion and frequent insulin-independence at the beginning of the disease.<ref>PMID:18192540</ref> <ref>PMID:18162506</ref> <ref>PMID:20226046</ref> | ||
== Function == | == Function == | ||
- | + | [https://www.uniprot.org/uniprot/IDE_HUMAN IDE_HUMAN] Plays a role in the cellular breakdown of insulin, IAPP, glucagon, bradykinin, kallidin and other peptides, and thereby plays a role in intercellular peptide signaling. Degrades amyloid formed by APP and IAPP. May play a role in the degradation and clearance of naturally secreted amyloid beta-protein by neurons and microglia.<ref>PMID:10684867</ref> <ref>PMID:17613531</ref> <ref>PMID:18986166</ref> | |
== Evolutionary Conservation == | == Evolutionary Conservation == | ||
[[Image:Consurf_key_small.gif|200px|right]] | [[Image:Consurf_key_small.gif|200px|right]] | ||
Line 24: | Line 20: | ||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=2g54 ConSurf]. | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=2g54 ConSurf]. | ||
<div style="clear:both"></div> | <div style="clear:both"></div> | ||
- | <div style="background-color:#fffaf0;"> | ||
- | == Publication Abstract from PubMed == | ||
- | Insulin-degrading enzyme (IDE), a Zn2+-metalloprotease, is involved in the clearance of insulin and amyloid-beta (refs 1-3). Loss-of-function mutations of IDE in rodents cause glucose intolerance and cerebral accumulation of amyloid-beta, whereas enhanced IDE activity effectively reduces brain amyloid-beta (refs 4-7). Here we report structures of human IDE in complex with four substrates (insulin B chain, amyloid-beta peptide (1-40), amylin and glucagon). The amino- and carboxy-terminal domains of IDE (IDE-N and IDE-C, respectively) form an enclosed cage just large enough to encapsulate insulin. Extensive contacts between IDE-N and IDE-C keep the degradation chamber of IDE inaccessible to substrates. Repositioning of the IDE domains enables substrate access to the catalytic cavity. IDE uses size and charge distribution of the substrate-binding cavity selectively to entrap structurally diverse polypeptides. The enclosed substrate undergoes conformational changes to form beta-sheets with two discrete regions of IDE for its degradation. Consistent with this model, mutations disrupting the contacts between IDE-N and IDE-C increase IDE catalytic activity 40-fold. The molecular basis for substrate recognition and allosteric regulation of IDE could aid in designing IDE-based therapies to control cerebral amyloid-beta and blood sugar concentrations. | ||
- | |||
- | Structures of human insulin-degrading enzyme reveal a new substrate recognition mechanism.,Shen Y, Joachimiak A, Rosner MR, Tang WJ Nature. 2006 Oct 19;443(7113):870-4. Epub 2006 Oct 11. PMID:17051221<ref>PMID:17051221</ref> | ||
- | |||
- | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
- | </div> | ||
- | <div class="pdbe-citations 2g54" style="background-color:#fffaf0;"></div> | ||
==See Also== | ==See Also== | ||
Line 42: | Line 29: | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> | ||
- | [[Category: | + | [[Category: Homo sapiens]] |
- | + | ||
[[Category: Large Structures]] | [[Category: Large Structures]] | ||
- | [[Category: Shen | + | [[Category: Shen Y]] |
- | [[Category: Tang | + | [[Category: Tang W-J]] |
- | + | ||
- | + |
Current revision
Crystal structure of Zn-bound human insulin-degrading enzyme in complex with insulin B chain
|