|
|
Line 4: |
Line 4: |
| == Structural highlights == | | == Structural highlights == |
| <table><tr><td colspan='2'>[[7un8]] is a 6 chain structure with sequence from [https://en.wikipedia.org/wiki/Sphingobacterium_faecium Sphingobacterium faecium]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=7UN8 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=7UN8 FirstGlance]. <br> | | <table><tr><td colspan='2'>[[7un8]] is a 6 chain structure with sequence from [https://en.wikipedia.org/wiki/Sphingobacterium_faecium Sphingobacterium faecium]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=7UN8 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=7UN8 FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=C2E:9,9-[(2R,3R,3aS,5S,7aR,9R,10R,10aS,12S,14aR)-3,5,10,12-tetrahydroxy-5,12-dioxidooctahydro-2H,7H-difuro[3,2-d 3,2-j][1,3,7,9,2,8]tetraoxadiphosphacyclododecine-2,9-diyl]bis(2-amino-1,9-dihydro-6H-purin-6-one)'>C2E</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Electron Microscopy, [[Resolution|Resolution]] 3.3Å</td></tr> |
| + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=C2E:9,9-[(2R,3R,3aS,5S,7aR,9R,10R,10aS,12S,14aR)-3,5,10,12-tetrahydroxy-5,12-dioxidooctahydro-2H,7H-difuro[3,2-d 3,2-j][1,3,7,9,2,8]tetraoxadiphosphacyclododecine-2,9-diyl]bis(2-amino-1,9-dihydro-6H-purin-6-one)'>C2E</scene></td></tr> |
| <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=7un8 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=7un8 OCA], [https://pdbe.org/7un8 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=7un8 RCSB], [https://www.ebi.ac.uk/pdbsum/7un8 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=7un8 ProSAT]</span></td></tr> | | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=7un8 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=7un8 OCA], [https://pdbe.org/7un8 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=7un8 RCSB], [https://www.ebi.ac.uk/pdbsum/7un8 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=7un8 ProSAT]</span></td></tr> |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[https://www.uniprot.org/uniprot/CAP12_SPHFK CAP12_SPHFK]] CBASS (cyclic oligonucleotide-based antiphage signaling system) provides immunity against bacteriophage. The CD-NTase protein synthesizes cyclic nucleotides in response to infection; these serve as specific second messenger signals. The signals activate a diverse range of effectors, leading to bacterial cell death and thus abortive phage infection. A type I-D(GG) CBASS system (PubMed:32839535).<ref>PMID:32839535</ref> <ref>PMID:32877915</ref> The effector protein for this CBASS system. Upon activation by c-di-GMP forms filaments which hydrolyze NAD(+); filament formation is required for enzyme activation. Induction in an E.coli strain that synthesizes c-di-GMP leads to significant growth inhibition. Binds c-di-GMP and 3'3'-cGAMP (3'3'-cyclic GMP-AMP), but not c-di-AMP, 2'3'-cGAMP or cUMP-AMP.<ref>PMID:32877915</ref>
| + | [https://www.uniprot.org/uniprot/CAP12_SPHFK CAP12_SPHFK] CBASS (cyclic oligonucleotide-based antiphage signaling system) provides immunity against bacteriophage. The CD-NTase protein synthesizes cyclic nucleotides in response to infection; these serve as specific second messenger signals. The signals activate a diverse range of effectors, leading to bacterial cell death and thus abortive phage infection. A type I-D(GG) CBASS system (PubMed:32839535).<ref>PMID:32839535</ref> <ref>PMID:32877915</ref> The effector protein for this CBASS system. Upon activation by c-di-GMP forms filaments which hydrolyze NAD(+); filament formation is required for enzyme activation. Induction in an E.coli strain that synthesizes c-di-GMP leads to significant growth inhibition. Binds c-di-GMP and 3'3'-cGAMP (3'3'-cyclic GMP-AMP), but not c-di-AMP, 2'3'-cGAMP or cUMP-AMP.<ref>PMID:32877915</ref> |
- | <div style="background-color:#fffaf0;">
| + | |
- | == Publication Abstract from PubMed ==
| + | |
- | Stimulator of interferon genes (STING) is an antiviral signalling protein that is broadly conserved in both innate immunity in animals and phage defence in prokaryotes(1-4). Activation of STING requires its assembly into an oligomeric filament structure through binding of a cyclic dinucleotide(4-13), but the molecular basis of STING filament assembly and extension remains unknown. Here we use cryogenic electron microscopy to determine the structure of the active Toll/interleukin-1 receptor (TIR)-STING filament complex from a Sphingobacterium faecium cyclic-oligonucleotide-based antiphage signalling system (CBASS) defence operon. Bacterial TIR-STING filament formation is driven by STING interfaces that become exposed on high-affinity recognition of the cognate cyclic dinucleotide signal c-di-GMP. Repeating dimeric STING units stack laterally head-to-head through surface interfaces, which are also essential for human STING tetramer formation and downstream immune signalling in mammals(5). The active bacterial TIR-STING structure reveals further cross-filament contacts that brace the assembly and coordinate packing of the associated TIR NADase effector domains at the base of the filament to drive NAD(+) hydrolysis. STING interface and cross-filament contacts are essential for cell growth arrest in vivo and reveal a stepwise mechanism of activation whereby STING filament assembly is required for subsequent effector activation. Our results define the structural basis of STING filament formation in prokaryotic antiviral signalling.
| + | |
- | | + | |
- | Cryo-EM structure of an active bacterial TIR-STING filament complex.,Morehouse BR, Yip MCJ, Keszei AFA, McNamara-Bordewick NK, Shao S, Kranzusch PJ Nature. 2022 Jul 20. pii: 10.1038/s41586-022-04999-1. doi:, 10.1038/s41586-022-04999-1. PMID:35859168<ref>PMID:35859168</ref>
| + | |
- | | + | |
- | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br>
| + | |
- | </div>
| + | |
- | <div class="pdbe-citations 7un8" style="background-color:#fffaf0;"></div>
| + | |
| == References == | | == References == |
| <references/> | | <references/> |
| Structural highlights
Function
CAP12_SPHFK CBASS (cyclic oligonucleotide-based antiphage signaling system) provides immunity against bacteriophage. The CD-NTase protein synthesizes cyclic nucleotides in response to infection; these serve as specific second messenger signals. The signals activate a diverse range of effectors, leading to bacterial cell death and thus abortive phage infection. A type I-D(GG) CBASS system (PubMed:32839535).[1] [2] The effector protein for this CBASS system. Upon activation by c-di-GMP forms filaments which hydrolyze NAD(+); filament formation is required for enzyme activation. Induction in an E.coli strain that synthesizes c-di-GMP leads to significant growth inhibition. Binds c-di-GMP and 3'3'-cGAMP (3'3'-cyclic GMP-AMP), but not c-di-AMP, 2'3'-cGAMP or cUMP-AMP.[3]
References
- ↑ Millman A, Melamed S, Amitai G, Sorek R. Diversity and classification of cyclic-oligonucleotide-based anti-phage signalling systems. Nat Microbiol. 2020 Dec;5(12):1608-1615. doi: 10.1038/s41564-020-0777-y. Epub, 2020 Aug 24. PMID:32839535 doi:http://dx.doi.org/10.1038/s41564-020-0777-y
- ↑ Morehouse BR, Govande AA, Millman A, Keszei AFA, Lowey B, Ofir G, Shao S, Sorek R, Kranzusch PJ. STING cyclic dinucleotide sensing originated in bacteria. Nature. 2020 Sep 2. pii: 10.1038/s41586-020-2719-5. doi:, 10.1038/s41586-020-2719-5. PMID:32877915 doi:http://dx.doi.org/10.1038/s41586-020-2719-5
- ↑ Morehouse BR, Govande AA, Millman A, Keszei AFA, Lowey B, Ofir G, Shao S, Sorek R, Kranzusch PJ. STING cyclic dinucleotide sensing originated in bacteria. Nature. 2020 Sep 2. pii: 10.1038/s41586-020-2719-5. doi:, 10.1038/s41586-020-2719-5. PMID:32877915 doi:http://dx.doi.org/10.1038/s41586-020-2719-5
|