7uzv

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Current revision (09:39, 14 February 2024) (edit) (undo)
 
Line 4: Line 4:
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>[[7uzv]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=7UZV OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=7UZV FirstGlance]. <br>
<table><tr><td colspan='2'>[[7uzv]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=7UZV OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=7UZV FirstGlance]. <br>
-
</td></tr><tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=7uzv FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=7uzv OCA], [https://pdbe.org/7uzv PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=7uzv RCSB], [https://www.ebi.ac.uk/pdbsum/7uzv PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=7uzv ProSAT]</span></td></tr>
+
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Electron Microscopy, [[Resolution|Resolution]] 2.5&#8491;</td></tr>
 +
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=7uzv FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=7uzv OCA], [https://pdbe.org/7uzv PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=7uzv RCSB], [https://www.ebi.ac.uk/pdbsum/7uzv PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=7uzv ProSAT]</span></td></tr>
</table>
</table>
== Disease ==
== Disease ==
-
[[https://www.uniprot.org/uniprot/B3AT_HUMAN B3AT_HUMAN]] Defects in SLC4A1 are the cause of elliptocytosis type 4 (EL4) [MIM:[https://omim.org/entry/109270 109270]]. EL4 is a Rhesus-unlinked form of hereditary elliptocytosis, a genetically heterogeneous, autosomal dominant hematologic disorder. It is characterized by variable hemolytic anemia and elliptical or oval red cell shape.<ref>PMID:1722314</ref> <ref>PMID:1538405</ref> Defects in SLC4A1 are the cause of spherocytosis type 4 (SPH4) [MIM:[https://omim.org/entry/612653 612653]]; also known as hereditary spherocytosis type 4 (HS4). Spherocytosis is a hematologic disorder leading to chronic hemolytic anemia and characterized by numerous abnormally shaped erythrocytes which are generally spheroidal.<ref>PMID:8547122</ref> <ref>PMID:1378323</ref> <ref>PMID:7530501</ref> <ref>PMID:8943874</ref> <ref>PMID:8640229</ref> <ref>PMID:9207478</ref> <ref>PMID:9012689</ref> <ref>PMID:9233560</ref> <ref>PMID:9973643</ref> <ref>PMID:10580570</ref> <ref>PMID:10942416</ref> <ref>PMID:10745622</ref> <ref>PMID:11380459</ref> <ref>PMID:15813913</ref> <ref>PMID:16227998</ref> Defects in SLC4A1 are the cause of renal tubular acidosis, distal, autosomal dominant (AD-dRTA) [MIM:[https://omim.org/entry/179800 179800]]. A disease characterized by reduced ability to acidify urine, variable hyperchloremic hypokalemic metabolic acidosis, nephrocalcinosis, and nephrolithiasis. Defects in SLC4A1 are the cause of renal tubular acidosis, distal, with hemolytic anemia (dRTA-HA) [MIM:[https://omim.org/entry/611590 611590]]. A disease characterized by the association of hemolytic anemia with distal renal tubular acidosis, the reduced ability to acidify urine resulting in variable hyperchloremic hypokalemic metabolic acidosis, nephrocalcinosis, and nephrolithiasis. Defects in SLC4A1 are the cause of renal tubular acidosis, distal, with normal red cell morphology (dRTA-NRC) [MIM:[https://omim.org/entry/611590 611590]]. A disease characterized by reduced ability to acidify urine, variable hyperchloremic hypokalemic metabolic acidosis, nephrocalcinosis, and nephrolithiasis.
+
[https://www.uniprot.org/uniprot/B3AT_HUMAN B3AT_HUMAN] Defects in SLC4A1 are the cause of elliptocytosis type 4 (EL4) [MIM:[https://omim.org/entry/109270 109270]. EL4 is a Rhesus-unlinked form of hereditary elliptocytosis, a genetically heterogeneous, autosomal dominant hematologic disorder. It is characterized by variable hemolytic anemia and elliptical or oval red cell shape.<ref>PMID:1722314</ref> <ref>PMID:1538405</ref> Defects in SLC4A1 are the cause of spherocytosis type 4 (SPH4) [MIM:[https://omim.org/entry/612653 612653]; also known as hereditary spherocytosis type 4 (HS4). Spherocytosis is a hematologic disorder leading to chronic hemolytic anemia and characterized by numerous abnormally shaped erythrocytes which are generally spheroidal.<ref>PMID:8547122</ref> <ref>PMID:1378323</ref> <ref>PMID:7530501</ref> <ref>PMID:8943874</ref> <ref>PMID:8640229</ref> <ref>PMID:9207478</ref> <ref>PMID:9012689</ref> <ref>PMID:9233560</ref> <ref>PMID:9973643</ref> <ref>PMID:10580570</ref> <ref>PMID:10942416</ref> <ref>PMID:10745622</ref> <ref>PMID:11380459</ref> <ref>PMID:15813913</ref> <ref>PMID:16227998</ref> Defects in SLC4A1 are the cause of renal tubular acidosis, distal, autosomal dominant (AD-dRTA) [MIM:[https://omim.org/entry/179800 179800]. A disease characterized by reduced ability to acidify urine, variable hyperchloremic hypokalemic metabolic acidosis, nephrocalcinosis, and nephrolithiasis. Defects in SLC4A1 are the cause of renal tubular acidosis, distal, with hemolytic anemia (dRTA-HA) [MIM:[https://omim.org/entry/611590 611590]. A disease characterized by the association of hemolytic anemia with distal renal tubular acidosis, the reduced ability to acidify urine resulting in variable hyperchloremic hypokalemic metabolic acidosis, nephrocalcinosis, and nephrolithiasis. Defects in SLC4A1 are the cause of renal tubular acidosis, distal, with normal red cell morphology (dRTA-NRC) [MIM:[https://omim.org/entry/611590 611590]. A disease characterized by reduced ability to acidify urine, variable hyperchloremic hypokalemic metabolic acidosis, nephrocalcinosis, and nephrolithiasis.
== Function ==
== Function ==
-
[[https://www.uniprot.org/uniprot/B3AT_HUMAN B3AT_HUMAN]] Band 3 is the major integral glycoprotein of the erythrocyte membrane. Band 3 has two functional domains. Its integral domain mediates a 1:1 exchange of inorganic anions across the membrane, whereas its cytoplasmic domain provides binding sites for cytoskeletal proteins, glycolytic enzymes, and hemoglobin.
+
[https://www.uniprot.org/uniprot/B3AT_HUMAN B3AT_HUMAN] Band 3 is the major integral glycoprotein of the erythrocyte membrane. Band 3 has two functional domains. Its integral domain mediates a 1:1 exchange of inorganic anions across the membrane, whereas its cytoplasmic domain provides binding sites for cytoskeletal proteins, glycolytic enzymes, and hemoglobin.
-
<div style="background-color:#fffaf0;">
+
-
== Publication Abstract from PubMed ==
+
-
The stability and shape of the erythrocyte membrane is provided by the ankyrin-1 complex, but how it tethers the spectrin-actin cytoskeleton to the lipid bilayer and the nature of its association with the band 3 anion exchanger and the Rhesus glycoproteins remains unknown. Here we present structures of ankyrin-1 complexes purified from human erythrocytes. We reveal the architecture of a core complex of ankyrin-1, the Rhesus proteins RhAG and RhCE, the band 3 anion exchanger, protein 4.2, glycophorin A and glycophorin B. The distinct T-shaped conformation of membrane-bound ankyrin-1 facilitates recognition of RhCE and, unexpectedly, the water channel aquaporin-1. Together, our results uncover the molecular details of ankyrin-1 association with the erythrocyte membrane, and illustrate the mechanism of ankyrin-mediated membrane protein clustering.
+
-
Architecture of the human erythrocyte ankyrin-1 complex.,Vallese F, Kim K, Yen LY, Johnston JD, Noble AJ, Cali T, Clarke OB Nat Struct Mol Biol. 2022 Jul;29(7):706-718. doi: 10.1038/s41594-022-00792-w., Epub 2022 Jul 14. PMID:35835865<ref>PMID:35835865</ref>
+
==See Also==
-
 
+
*[[Anion exchange protein 3D structures|Anion exchange protein 3D structures]]
-
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
+
-
</div>
+
-
<div class="pdbe-citations 7uzv" style="background-color:#fffaf0;"></div>
+
== References ==
== References ==
<references/>
<references/>

Current revision

Cytoplasmic domains of Band 3-I (local refinement from consensus reconstruction of ankyrin complexes)

PDB ID 7uzv

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools