|
|
Line 3: |
Line 3: |
| <StructureSection load='2hyi' size='340' side='right'caption='[[2hyi]], [[Resolution|resolution]] 2.30Å' scene=''> | | <StructureSection load='2hyi' size='340' side='right'caption='[[2hyi]], [[Resolution|resolution]] 2.30Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[2hyi]] is a 10 chain structure with sequence from [https://en.wikipedia.org/wiki/Human Human]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2HYI OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2HYI FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[2hyi]] is a 10 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2HYI OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2HYI FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ANP:PHOSPHOAMINOPHOSPHONIC+ACID-ADENYLATE+ESTER'>ANP</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.3Å</td></tr> |
- | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat"><div style='overflow: auto; max-height: 3em;'>[[2hxy|2hxy]], [[1p27|1p27]], [[2db3|2db3]]</div></td></tr> | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ANP:PHOSPHOAMINOPHOSPHONIC+ACID-ADENYLATE+ESTER'>ANP</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">MAGOH ([https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN]), RBM8A, RBM8 ([https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN]), DDX48, EIF4A3, KIAA0111 ([https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN]), CASC3, MLN51 ([https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN])</td></tr>
| + | |
| <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2hyi FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2hyi OCA], [https://pdbe.org/2hyi PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2hyi RCSB], [https://www.ebi.ac.uk/pdbsum/2hyi PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2hyi ProSAT]</span></td></tr> | | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2hyi FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2hyi OCA], [https://pdbe.org/2hyi PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2hyi RCSB], [https://www.ebi.ac.uk/pdbsum/2hyi PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2hyi ProSAT]</span></td></tr> |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[https://www.uniprot.org/uniprot/IF4A3_HUMAN IF4A3_HUMAN]] ATP-dependent RNA helicase. Component of a splicing-dependent multiprotein exon junction complex (EJC) deposited at splice junction on mRNAs. The EJC is a dynamic structure consisting of a few core proteins and several more peripheral nuclear and cytoplasmic associated factors that join the complex only transiently either during EJC assembly or during subsequent mRNA metabolism. Core components of the EJC, that remains bound to spliced mRNAs throughout all stages of mRNA metabolism, functions to mark the position of the exon-exon junction in the mature mRNA and thereby influences downstream processes of gene expression including mRNA splicing, nuclear mRNA export, subcellular mRNA localization, translation efficiency and nonsense-mediated mRNA decay (NMD). Constitutes at least part of the platform anchoring other EJC proteins to spliced mRNAs. Its RNA-dependent ATPase and RNA-helicase activities are induced by CASC3, but abolished in presence of the MAGOH/RBM8A heterodimer, thereby trapping the ATP-bound EJC core onto spliced mRNA in a stable conformation. The inhibition of ATPase activity by the MAGOH/RBM8A heterodimer increases the RNA-binding affinity of the EJC. Involved in translational enhancement of spliced mRNAs after formation of the 80S ribosome complex. Binds spliced mRNA in sequence-independent manner, 20-24 nucleotides upstream of mRNA exon-exon junctions. Shows higher affinity for single-stranded RNA in an ATP-bound core EJC complex than after the ATP is hydrolyzed.<ref>PMID:15034551</ref> <ref>PMID:16209946</ref> <ref>PMID:16170325</ref> <ref>PMID:17375189</ref> <ref>PMID:19409878</ref> [[https://www.uniprot.org/uniprot/RBM8A_HUMAN RBM8A_HUMAN]] Component of a splicing-dependent multiprotein exon junction complex (EJC) deposited at splice junction on mRNAs. The EJC is a dynamic structure consisting of a few core proteins and several more peripheral nuclear and cytoplasmic associated factors that join the complex only transiently either during EJC assembly or during subsequent mRNA metabolism. Core components of the EJC, that remains bound to spliced mRNAs throughout all stages of mRNA metabolism, functions to mark the position of the exon-exon junction in the mature mRNA and thereby influences downstream processes of gene expression including mRNA splicing, nuclear mRNA export, subcellular mRNA localization, translation efficiency and nonsense-mediated mRNA decay (NMD). The heterodimer MAGOH-RBM8A interacts with PYM that function to enhance the translation of EJC-bearing spliced mRNAs by recruiting them to the ribosomal 48S preinitiation complex. Remains associated with mRNAs in the cytoplasm until the mRNAs engage the translation machinery. Its removal from cytoplasmic mRNAs requires translation initiation from EJC-bearing spliced mRNAs. Associates preferentially with mRNAs produced by splicing. Does not interact with pre-mRNAs, introns, or mRNAs produced from intronless cDNAs. Associates with both nuclear mRNAs and newly exported cytoplasmic mRNAs. Complex with MAGOH is a component of the nonsense mediated decay (NMD) pathway.<ref>PMID:12121612</ref> <ref>PMID:12718880</ref> <ref>PMID:12730685</ref> <ref>PMID:16209946</ref> <ref>PMID:19409878</ref> [[https://www.uniprot.org/uniprot/MGN_HUMAN MGN_HUMAN]] Component of a splicing-dependent multiprotein exon junction complex (EJC) deposited at splice junction on mRNAs. The EJC is a dynamic structure consisting of a few core proteins and several more peripheral nuclear and cytoplasmic associated factors that join the complex only transiently either during EJC assembly or during subsequent mRNA metabolism. Core components of the EJC, that remains bound to spliced mRNAs throughout all stages of mRNA metabolism, functions to mark the position of the exon-exon junction in the mature mRNA and thereby influences downstream processes of gene expression including mRNA splicing, nuclear mRNA export, subcellular mRNA localization, translation efficiency and nonsense-mediated mRNA decay (NMD). Remains associated with the mRNA after its export to the cytoplasm and require translation of the mRNA for removal. The heterodimer MAGOH-RBM8A interacts with PYM that function to enhance the translation of EJC-bearing spliced mRNAs by recruiting them to the ribosomal 48S preinitiation complex.<ref>PMID:12730685</ref> <ref>PMID:16209946</ref> [[https://www.uniprot.org/uniprot/CASC3_HUMAN CASC3_HUMAN]] Component of a splicing-dependent multiprotein exon junction complex (EJC) deposited at splice junction on mRNAs. The EJC is a dynamic structure consisting of a few core proteins and several more peripheral nuclear and cytoplasmic associated factors that join the complex only transiently either during EJC assembly or during subsequent mRNA metabolism. Core components of the EJC, that remains bound to spliced mRNAs throughout all stages of mRNA metabolism, functions to mark the position of the exon-exon junction in the mature mRNA and thereby influences downstream processes of gene expression including mRNA splicing, nuclear mRNA export, subcellular mRNA localization, translation efficiency and nonsense-mediated mRNA decay (NMD). Stimulates the ATPase and RNA-helicase activities of EIF4A3. Plays a role in the stress response by participating in cytoplasmic stress granules assembly and by favoring cell recovery following stress. Component of the dendritic ribonucleoprotein particles (RNPs) in hippocampal neurons (By similarity). May play a role in mRNA transport (By similarity). Binds spliced mRNA in sequence-independent manner, 20-24 nucleotides upstream of mRNA exon-exon junctions. Binds poly(G) and poly(U) RNA homopolymer.<ref>PMID:17652158</ref> <ref>PMID:17375189</ref>
| + | [https://www.uniprot.org/uniprot/MGN_HUMAN MGN_HUMAN] Component of a splicing-dependent multiprotein exon junction complex (EJC) deposited at splice junction on mRNAs. The EJC is a dynamic structure consisting of a few core proteins and several more peripheral nuclear and cytoplasmic associated factors that join the complex only transiently either during EJC assembly or during subsequent mRNA metabolism. Core components of the EJC, that remains bound to spliced mRNAs throughout all stages of mRNA metabolism, functions to mark the position of the exon-exon junction in the mature mRNA and thereby influences downstream processes of gene expression including mRNA splicing, nuclear mRNA export, subcellular mRNA localization, translation efficiency and nonsense-mediated mRNA decay (NMD). Remains associated with the mRNA after its export to the cytoplasm and require translation of the mRNA for removal. The heterodimer MAGOH-RBM8A interacts with PYM that function to enhance the translation of EJC-bearing spliced mRNAs by recruiting them to the ribosomal 48S preinitiation complex.<ref>PMID:12730685</ref> <ref>PMID:16209946</ref> |
| == Evolutionary Conservation == | | == Evolutionary Conservation == |
| [[Image:Consurf_key_small.gif|200px|right]] | | [[Image:Consurf_key_small.gif|200px|right]] |
Line 21: |
Line 20: |
| </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=2hyi ConSurf]. | | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=2hyi ConSurf]. |
| <div style="clear:both"></div> | | <div style="clear:both"></div> |
- | <div style="background-color:#fffaf0;"> | |
- | == Publication Abstract from PubMed == | |
- | In higher eukaryotes, a multiprotein exon junction complex is deposited on spliced messenger RNAs. The complex is organized around a stable core, which serves as a binding platform for numerous factors that influence messenger RNA function. Here, we present the crystal structure of a tetrameric exon junction core complex containing the DEAD-box adenosine triphosphatase (ATPase) eukaryotic initiation factor 4AIII (eIF4AIII) bound to an ATP analog, MAGOH, Y14, a fragment of MLN51, and a polyuracil mRNA mimic. eIF4AIII interacts with the phosphate-ribose backbone of six consecutive nucleotides and prevents part of the bound RNA from being double stranded. The MAGOH and Y14 subunits lock eIF4AIII in a prehydrolysis state, and activation of the ATPase probably requires only modest conformational changes in eIF4AIII motif I. | |
- | | |
- | Structure of the exon junction core complex with a trapped DEAD-box ATPase bound to RNA.,Andersen CB, Ballut L, Johansen JS, Chamieh H, Nielsen KH, Oliveira CL, Pedersen JS, Seraphin B, Le Hir H, Andersen GR Science. 2006 Sep 29;313(5795):1968-72. Epub 2006 Aug 24. PMID:16931718<ref>PMID:16931718</ref> | |
- | | |
- | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |
- | </div> | |
- | <div class="pdbe-citations 2hyi" style="background-color:#fffaf0;"></div> | |
| | | |
| ==See Also== | | ==See Also== |
Line 37: |
Line 27: |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Human]] | + | [[Category: Homo sapiens]] |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Andersen, C B.F]] | + | [[Category: Andersen CBF]] |
- | [[Category: Andersen, G R]] | + | [[Category: Andersen GR]] |
- | [[Category: Hir, H Le]] | + | [[Category: Le Hir H]] |
- | [[Category: Dead-box atpase]]
| + | |
- | [[Category: Exon junction]]
| + | |
- | [[Category: Hydrolase-rna binding protein-rna complex]]
| + | |
- | [[Category: Mrna processing]]
| + | |
- | [[Category: Nonsense mediated decay]]
| + | |
- | [[Category: Splicing]]
| + | |
- | [[Category: Translation]]
| + | |