3j7x

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Current revision (10:11, 21 February 2024) (edit) (undo)
 
Line 9: Line 9:
== Function ==
== Function ==
[https://www.uniprot.org/uniprot/CAPSA_BPT7 CAPSA_BPT7] Assembles with the minor capsid protein to form an icosahedral capsid with a T=7 symmetry, about 60 nm in diameter, and consisting of 415 capsid proteins. The major and minor capsid proteins are incorporated into the capsid in about a 90/10 ratio respectively. Once the capsid is formed, encapsidates one single copy of the viral genome.<ref>PMID:20962334</ref>
[https://www.uniprot.org/uniprot/CAPSA_BPT7 CAPSA_BPT7] Assembles with the minor capsid protein to form an icosahedral capsid with a T=7 symmetry, about 60 nm in diameter, and consisting of 415 capsid proteins. The major and minor capsid proteins are incorporated into the capsid in about a 90/10 ratio respectively. Once the capsid is formed, encapsidates one single copy of the viral genome.<ref>PMID:20962334</ref>
-
<div style="background-color:#fffaf0;">
 
-
== Publication Abstract from PubMed ==
 
-
Many dsDNA viruses first assemble a DNA-free procapsid, using a scaffolding protein-dependent process. The procapsid, then, undergoes dramatic conformational maturation while packaging DNA. For bacteriophage T7 we report the following four single-particle cryo-EM 3D reconstructions and the derived atomic models: procapsid (4.6-A resolution), an early-stage DNA packaging intermediate (3.5 A), a later-stage packaging intermediate (6.6 A), and the final infectious phage (3.6 A). In the procapsid, the N terminus of the major capsid protein, gp10, has a six-turn helix at the inner surface of the shell, where each skewed hexamer of gp10 interacts with two scaffolding proteins. With the exit of scaffolding proteins during maturation the gp10 N-terminal helix unfolds and swings through the capsid shell to the outer surface. The refolded N-terminal region has a hairpin that forms a novel noncovalent, joint-like, intercapsomeric interaction with a pocket formed during shell expansion. These large conformational changes also result in a new noncovalent, intracapsomeric topological linking. Both interactions further stabilize the capsids by interlocking all pentameric and hexameric capsomeres in both DNA packaging intermediate and phage. Although the final phage shell has nearly identical structure to the shell of the DNA-free intermediate, surprisingly we found that the icosahedral faces of the phage are slightly ( approximately 4 A) contracted relative to the faces of the intermediate, despite the internal pressure from the densely packaged DNA genome. These structures provide a basis for understanding the capsid maturation process during DNA packaging that is essential for large numbers of dsDNA viruses.
 
- 
-
Capsid expansion mechanism of bacteriophage T7 revealed by multistate atomic models derived from cryo-EM reconstructions.,Guo F, Liu Z, Fang PA, Zhang Q, Wright ET, Wu W, Zhang C, Vago F, Ren Y, Jakana J, Chiu W, Serwer P, Jiang W Proc Natl Acad Sci U S A. 2014 Oct 13. pii: 201407020. PMID:25313071<ref>PMID:25313071</ref>
 
- 
-
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
 
-
</div>
 
-
<div class="pdbe-citations 3j7x" style="background-color:#fffaf0;"></div>
 
== References ==
== References ==
<references/>
<references/>

Current revision

Capsid Expansion Mechanism Of Bacteriophage T7 Revealed By Multi-State Atomic Models Derived From Cryo-EM Reconstructions

3j7x, resolution 3.80Å

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools