3lco

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Current revision (10:19, 21 February 2024) (edit) (undo)
 
Line 1: Line 1:
==Inhibitor Bound to A DFG-Out structure of the Kinase Domain of CSF-1R==
==Inhibitor Bound to A DFG-Out structure of the Kinase Domain of CSF-1R==
-
<StructureSection load='3lco' size='340' side='right' caption='[[3lco]], [[Resolution|resolution]] 3.40&Aring;' scene=''>
+
<StructureSection load='3lco' size='340' side='right'caption='[[3lco]], [[Resolution|resolution]] 3.40&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
-
<table><tr><td colspan='2'>[[3lco]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Human Human]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3LCO OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3LCO FirstGlance]. <br>
+
<table><tr><td colspan='2'>[[3lco]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3LCO OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3LCO FirstGlance]. <br>
-
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=LC0:3-({4-METHOXY-5-[(4-METHOXYBENZYL)OXY]PYRIDIN-2-YL}METHOXY)-5-(1-METHYL-1H-PYRAZOL-4-YL)PYRAZIN-2-AMINE'>LC0</scene></td></tr>
+
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 3.4&#8491;</td></tr>
-
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[3lcd|3lcd]]</td></tr>
+
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=LC0:3-({4-METHOXY-5-[(4-METHOXYBENZYL)OXY]PYRIDIN-2-YL}METHOXY)-5-(1-METHYL-1H-PYRAZOL-4-YL)PYRAZIN-2-AMINE'>LC0</scene></td></tr>
-
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">CSF-1R, CSF1R, FMS ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN])</td></tr>
+
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3lco FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3lco OCA], [https://pdbe.org/3lco PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3lco RCSB], [https://www.ebi.ac.uk/pdbsum/3lco PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3lco ProSAT]</span></td></tr>
-
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Receptor_protein-tyrosine_kinase Receptor protein-tyrosine kinase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.7.10.1 2.7.10.1] </span></td></tr>
+
-
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3lco FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3lco OCA], [http://pdbe.org/3lco PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=3lco RCSB], [http://www.ebi.ac.uk/pdbsum/3lco PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=3lco ProSAT]</span></td></tr>
+
</table>
</table>
== Disease ==
== Disease ==
-
[[http://www.uniprot.org/uniprot/CSF1R_HUMAN CSF1R_HUMAN]] Note=Aberrant expression of CSF1 or CSF1R can promote cancer cell proliferation, invasion and formation of metastases. Overexpression of CSF1 or CSF1R is observed in a significant percentage of breast, ovarian, prostate, and endometrial cancers.<ref>PMID:15117969</ref> <ref>PMID:16648572</ref> <ref>PMID:17121910</ref> <ref>PMID:18814279</ref> <ref>PMID:19934330</ref> <ref>PMID:16337366</ref> Note=Aberrant expression of CSF1 or CSF1R may play a role in inflammatory diseases, such as rheumatoid arthritis, glomerulonephritis, atherosclerosis, and allograft rejection.<ref>PMID:15117969</ref> <ref>PMID:16648572</ref> <ref>PMID:17121910</ref> <ref>PMID:18814279</ref> <ref>PMID:19934330</ref> <ref>PMID:16337366</ref> Defects in CSF1R are the cause of leukoencephalopathy, diffuse hereditary, with spheroids (HDLS) [MIM:[http://omim.org/entry/221820 221820]]. An autosomal dominant adult-onset rapidly progressive neurodegenerative disorder characterized by variable behavioral, cognitive, and motor changes. Patients often die of dementia within 6 years of onset. Brain imaging shows patchy abnormalities in the cerebral white matter, predominantly affecting the frontal and parietal lobes.<ref>PMID:15117969</ref> <ref>PMID:16648572</ref> <ref>PMID:17121910</ref> <ref>PMID:18814279</ref> <ref>PMID:19934330</ref> <ref>PMID:16337366</ref> <ref>PMID:22197934</ref>
+
[https://www.uniprot.org/uniprot/CSF1R_HUMAN CSF1R_HUMAN] Note=Aberrant expression of CSF1 or CSF1R can promote cancer cell proliferation, invasion and formation of metastases. Overexpression of CSF1 or CSF1R is observed in a significant percentage of breast, ovarian, prostate, and endometrial cancers.<ref>PMID:15117969</ref> <ref>PMID:16648572</ref> <ref>PMID:17121910</ref> <ref>PMID:18814279</ref> <ref>PMID:19934330</ref> <ref>PMID:16337366</ref> Note=Aberrant expression of CSF1 or CSF1R may play a role in inflammatory diseases, such as rheumatoid arthritis, glomerulonephritis, atherosclerosis, and allograft rejection.<ref>PMID:15117969</ref> <ref>PMID:16648572</ref> <ref>PMID:17121910</ref> <ref>PMID:18814279</ref> <ref>PMID:19934330</ref> <ref>PMID:16337366</ref> Defects in CSF1R are the cause of leukoencephalopathy, diffuse hereditary, with spheroids (HDLS) [MIM:[https://omim.org/entry/221820 221820]. An autosomal dominant adult-onset rapidly progressive neurodegenerative disorder characterized by variable behavioral, cognitive, and motor changes. Patients often die of dementia within 6 years of onset. Brain imaging shows patchy abnormalities in the cerebral white matter, predominantly affecting the frontal and parietal lobes.<ref>PMID:15117969</ref> <ref>PMID:16648572</ref> <ref>PMID:17121910</ref> <ref>PMID:18814279</ref> <ref>PMID:19934330</ref> <ref>PMID:16337366</ref> <ref>PMID:22197934</ref>
== Function ==
== Function ==
-
[[http://www.uniprot.org/uniprot/CSF1R_HUMAN CSF1R_HUMAN]] Tyrosine-protein kinase that acts as cell-surface receptor for CSF1 and IL34 and plays an essential role in the regulation of survival, proliferation and differentiation of hematopoietic precursor cells, especially mononuclear phagocytes, such as macrophages and monocytes. Promotes the release of proinflammatory chemokines in response to IL34 and CSF1, and thereby plays an important role in innate immunity and in inflammatory processes. Plays an important role in the regulation of osteoclast proliferation and differentiation, the regulation of bone resorption, and is required for normal bone and tooth development. Required for normal male and female fertility, and for normal development of milk ducts and acinar structures in the mammary gland during pregnancy. Promotes reorganization of the actin cytoskeleton, regulates formation of membrane ruffles, cell adhesion and cell migration, and promotes cancer cell invasion. Activates several signaling pathways in response to ligand binding. Phosphorylates PIK3R1, PLCG2, GRB2, SLA2 and CBL. Activation of PLCG2 leads to the production of the cellular signaling molecules diacylglycerol and inositol 1,4,5-trisphosphate, that then lead to the activation of protein kinase C family members, especially PRKCD. Phosphorylation of PIK3R1, the regulatory subunit of phosphatidylinositol 3-kinase, leads to activation of the AKT1 signaling pathway. Activated CSF1R also mediates activation of the MAP kinases MAPK1/ERK2 and/or MAPK3/ERK1, and of the SRC family kinases SRC, FYN and YES1. Activated CSF1R transmits signals both via proteins that directly interact with phosphorylated tyrosine residues in its intracellular domain, or via adapter proteins, such as GRB2. Promotes activation of STAT family members STAT3, STAT5A and/or STAT5B. Promotes tyrosine phosphorylation of SHC1 and INPP5D/SHIP-1. Receptor signaling is down-regulated by protein phosphatases, such as INPP5D/SHIP-1, that dephosphorylate the receptor and its downstream effectors, and by rapid internalization of the activated receptor.<ref>PMID:7683918</ref> <ref>PMID:12882960</ref> <ref>PMID:15117969</ref> <ref>PMID:16648572</ref> <ref>PMID:17121910</ref> <ref>PMID:16170366</ref> <ref>PMID:18467591</ref> <ref>PMID:18814279</ref> <ref>PMID:19934330</ref> <ref>PMID:20489731</ref> <ref>PMID:20829061</ref> <ref>PMID:20504948</ref> <ref>PMID:16337366</ref> <ref>PMID:19193011</ref>
+
[https://www.uniprot.org/uniprot/CSF1R_HUMAN CSF1R_HUMAN] Tyrosine-protein kinase that acts as cell-surface receptor for CSF1 and IL34 and plays an essential role in the regulation of survival, proliferation and differentiation of hematopoietic precursor cells, especially mononuclear phagocytes, such as macrophages and monocytes. Promotes the release of proinflammatory chemokines in response to IL34 and CSF1, and thereby plays an important role in innate immunity and in inflammatory processes. Plays an important role in the regulation of osteoclast proliferation and differentiation, the regulation of bone resorption, and is required for normal bone and tooth development. Required for normal male and female fertility, and for normal development of milk ducts and acinar structures in the mammary gland during pregnancy. Promotes reorganization of the actin cytoskeleton, regulates formation of membrane ruffles, cell adhesion and cell migration, and promotes cancer cell invasion. Activates several signaling pathways in response to ligand binding. Phosphorylates PIK3R1, PLCG2, GRB2, SLA2 and CBL. Activation of PLCG2 leads to the production of the cellular signaling molecules diacylglycerol and inositol 1,4,5-trisphosphate, that then lead to the activation of protein kinase C family members, especially PRKCD. Phosphorylation of PIK3R1, the regulatory subunit of phosphatidylinositol 3-kinase, leads to activation of the AKT1 signaling pathway. Activated CSF1R also mediates activation of the MAP kinases MAPK1/ERK2 and/or MAPK3/ERK1, and of the SRC family kinases SRC, FYN and YES1. Activated CSF1R transmits signals both via proteins that directly interact with phosphorylated tyrosine residues in its intracellular domain, or via adapter proteins, such as GRB2. Promotes activation of STAT family members STAT3, STAT5A and/or STAT5B. Promotes tyrosine phosphorylation of SHC1 and INPP5D/SHIP-1. Receptor signaling is down-regulated by protein phosphatases, such as INPP5D/SHIP-1, that dephosphorylate the receptor and its downstream effectors, and by rapid internalization of the activated receptor.<ref>PMID:7683918</ref> <ref>PMID:12882960</ref> <ref>PMID:15117969</ref> <ref>PMID:16648572</ref> <ref>PMID:17121910</ref> <ref>PMID:16170366</ref> <ref>PMID:18467591</ref> <ref>PMID:18814279</ref> <ref>PMID:19934330</ref> <ref>PMID:20489731</ref> <ref>PMID:20829061</ref> <ref>PMID:20504948</ref> <ref>PMID:16337366</ref> <ref>PMID:19193011</ref>
== Evolutionary Conservation ==
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
[[Image:Consurf_key_small.gif|200px|right]]
Check<jmol>
Check<jmol>
<jmolCheckbox>
<jmolCheckbox>
-
<scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/lc/3lco_consurf.spt"</scriptWhenChecked>
+
<scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/lc/3lco_consurf.spt"</scriptWhenChecked>
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
<text>to colour the structure by Evolutionary Conservation</text>
<text>to colour the structure by Evolutionary Conservation</text>
Line 24: Line 22:
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=3lco ConSurf].
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=3lco ConSurf].
<div style="clear:both"></div>
<div style="clear:both"></div>
-
<div style="background-color:#fffaf0;">
 
-
== Publication Abstract from PubMed ==
 
-
The work described herein demonstrates the utility of structure-based drug design (SBDD) in shifting the binding mode of an HTS hit from a DFG-in to a DFG-out binding mode resulting in a class of novel potent CSF-1R kinase inhibitors suitable for lead development.
 
-
Structure-based drug design enables conversion of a DFG-in binding CSF-1R kinase inhibitor to a DFG-out binding mode.,Meyers MJ, Pelc M, Kamtekar S, Day J, Poda GI, Hall MK, Michener ML, Reitz BA, Mathis KJ, Pierce BS, Parikh MD, Mischke DA, Long SA, Parlow JJ, Anderson DR, Thorarensen A Bioorg Med Chem Lett. 2010 Mar 1;20(5):1543-7. Epub 2010 Jan 21. PMID:20137931<ref>PMID:20137931</ref>
+
==See Also==
-
 
+
*[[Colony-stimulating factor receptor 3D structures|Colony-stimulating factor receptor 3D structures]]
-
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
+
-
</div>
+
-
<div class="pdbe-citations 3lco" style="background-color:#fffaf0;"></div>
+
== References ==
== References ==
<references/>
<references/>
__TOC__
__TOC__
</StructureSection>
</StructureSection>
-
[[Category: Human]]
+
[[Category: Homo sapiens]]
-
[[Category: Receptor protein-tyrosine kinase]]
+
[[Category: Large Structures]]
-
[[Category: Day, J E]]
+
[[Category: Day JE]]
-
[[Category: Kamtekar, S]]
+
[[Category: Kamtekar S]]
-
[[Category: Mathis, K J]]
+
[[Category: Mathis KJ]]
-
[[Category: Meyers, M J]]
+
[[Category: Meyers MJ]]
-
[[Category: Reitz, B A]]
+
[[Category: Reitz BA]]
-
[[Category: Atp-binding]]
+
-
[[Category: Disulfide bond]]
+
-
[[Category: Glycoprotein]]
+
-
[[Category: Immunoglobulin domain]]
+
-
[[Category: Kinase]]
+
-
[[Category: Membrane]]
+
-
[[Category: Nucleotide-binding]]
+
-
[[Category: Phosphoprotein]]
+
-
[[Category: Proto-oncogene]]
+
-
[[Category: Receptor]]
+
-
[[Category: Transferase]]
+
-
[[Category: Transmembrane]]
+
-
[[Category: Tyrosine-protein kinase]]
+

Current revision

Inhibitor Bound to A DFG-Out structure of the Kinase Domain of CSF-1R

PDB ID 3lco

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools