3p3w

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Current revision (11:20, 21 February 2024) (edit) (undo)
 
Line 3: Line 3:
<StructureSection load='3p3w' size='340' side='right'caption='[[3p3w]], [[Resolution|resolution]] 4.20&Aring;' scene=''>
<StructureSection load='3p3w' size='340' side='right'caption='[[3p3w]], [[Resolution|resolution]] 4.20&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
-
<table><tr><td colspan='2'>[[3p3w]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Buffalo_rat Buffalo rat]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3P3W OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3P3W FirstGlance]. <br>
+
<table><tr><td colspan='2'>[[3p3w]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Rattus_norvegicus Rattus norvegicus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3P3W OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3P3W FirstGlance]. <br>
-
</td></tr><tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat"><div style='overflow: auto; max-height: 3em;'>[[3o21|3o21]]</div></td></tr>
+
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 4.2&#8491;</td></tr>
-
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">Gria3, Glur3 ([https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=10116 Buffalo rat])</td></tr>
+
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3p3w FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3p3w OCA], [https://pdbe.org/3p3w PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3p3w RCSB], [https://www.ebi.ac.uk/pdbsum/3p3w PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3p3w ProSAT]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3p3w FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3p3w OCA], [https://pdbe.org/3p3w PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3p3w RCSB], [https://www.ebi.ac.uk/pdbsum/3p3w PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3p3w ProSAT]</span></td></tr>
</table>
</table>
== Function ==
== Function ==
-
[[https://www.uniprot.org/uniprot/GRIA3_RAT GRIA3_RAT]] Receptor for glutamate that functions as ligand-gated ion channel in the central nervous system and plays an important role in excitatory synaptic transmission. L-glutamate acts as an excitatory neurotransmitter at many synapses in the central nervous system. Binding of the excitatory neurotransmitter L-glutamate induces a conformation change, leading to the opening of the cation channel, and thereby converts the chemical signal to an electrical impulse. The receptor then desensitizes rapidly and enters a transient inactive state, characterized by the presence of bound agonist. In the presence of CACNG4 or CACNG7 or CACNG8, shows resensitization which is characterized by a delayed accumulation of current flux upon continued application of glutamate (By similarity).
+
[https://www.uniprot.org/uniprot/GRIA3_RAT GRIA3_RAT] Receptor for glutamate that functions as ligand-gated ion channel in the central nervous system and plays an important role in excitatory synaptic transmission. L-glutamate acts as an excitatory neurotransmitter at many synapses in the central nervous system. Binding of the excitatory neurotransmitter L-glutamate induces a conformation change, leading to the opening of the cation channel, and thereby converts the chemical signal to an electrical impulse. The receptor then desensitizes rapidly and enters a transient inactive state, characterized by the presence of bound agonist. In the presence of CACNG4 or CACNG7 or CACNG8, shows resensitization which is characterized by a delayed accumulation of current flux upon continued application of glutamate (By similarity).
-
<div style="background-color:#fffaf0;">
+
-
== Publication Abstract from PubMed ==
+
-
Glutamate-gated ion channels (ionotropic glutamate receptors, iGluRs) sense the extracellular milieu via an extensive extracellular portion, comprised of two clamshell-shaped segments. The distal, N-terminal domain (NTD) has allosteric potential in NMDA-type iGluRs, which has not been ascribed to the analogous domain in AMPA receptors (AMPARs). In this study, we present new structural data uncovering dynamic properties of the GluA2 and GluA3 AMPAR NTDs. GluA3 features a zipped-open dimer interface with unconstrained lower clamshell lobes, reminiscent of metabotropic GluRs (mGluRs). The resulting labile interface supports interprotomer rotations, which can be transmitted to downstream receptor segments. Normal mode analysis reveals two dominant mechanisms of AMPAR NTD motion: intraprotomer clamshell motions and interprotomer counter-rotations, as well as accessible interconversion between AMPAR and mGluR conformations. In addition, we detect electron density for a potential ligand in the GluA2 interlobe cleft, which may trigger lobe motions. Together, these data support a dynamic role for the AMPAR NTDs, which widens the allosteric landscape of the receptor and could provide a novel target for ligand development.
+
-
 
+
-
Dynamics and allosteric potential of the AMPA receptor N-terminal domain.,Sukumaran M, Rossmann M, Shrivastava I, Dutta A, Bahar I, Greger IH EMBO J. 2011 Mar 2;30(5):972-82. Epub 2011 Feb 11. PMID:21317871<ref>PMID:21317871</ref>
+
-
 
+
-
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
+
-
</div>
+
-
<div class="pdbe-citations 3p3w" style="background-color:#fffaf0;"></div>
+
==See Also==
==See Also==
*[[Glutamate receptor 3D structures|Glutamate receptor 3D structures]]
*[[Glutamate receptor 3D structures|Glutamate receptor 3D structures]]
-
== References ==
 
-
<references/>
 
__TOC__
__TOC__
</StructureSection>
</StructureSection>
-
[[Category: Buffalo rat]]
 
[[Category: Large Structures]]
[[Category: Large Structures]]
-
[[Category: Greger, I H]]
+
[[Category: Rattus norvegicus]]
-
[[Category: Rossmann, M]]
+
[[Category: Greger IH]]
-
[[Category: Sukumaran, M]]
+
[[Category: Rossmann M]]
-
[[Category: Periplasmatic binding protein]]
+
[[Category: Sukumaran M]]
-
[[Category: Transport protein]]
+

Current revision

Structure of a dimeric GluA3 N-terminal domain (NTD) at 4.2 A resolution

PDB ID 3p3w

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools