4fch

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Current revision (11:13, 1 March 2024) (edit) (undo)
 
Line 4: Line 4:
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>[[4fch]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Bacteroides_thetaiotaomicron_VPI-5482 Bacteroides thetaiotaomicron VPI-5482]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4FCH OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4FCH FirstGlance]. <br>
<table><tr><td colspan='2'>[[4fch]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Bacteroides_thetaiotaomicron_VPI-5482 Bacteroides thetaiotaomicron VPI-5482]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4FCH OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4FCH FirstGlance]. <br>
-
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=EDO:1,2-ETHANEDIOL'>EDO</scene>, <scene name='pdbligand=GLC:ALPHA-D-GLUCOSE'>GLC</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr>
+
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.3&#8491;</td></tr>
 +
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=EDO:1,2-ETHANEDIOL'>EDO</scene>, <scene name='pdbligand=GLC:ALPHA-D-GLUCOSE'>GLC</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4fch FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4fch OCA], [https://pdbe.org/4fch PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4fch RCSB], [https://www.ebi.ac.uk/pdbsum/4fch PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4fch ProSAT]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4fch FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4fch OCA], [https://pdbe.org/4fch PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4fch RCSB], [https://www.ebi.ac.uk/pdbsum/4fch PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4fch ProSAT]</span></td></tr>
</table>
</table>
== Function ==
== Function ==
[https://www.uniprot.org/uniprot/SUSE_BACTN SUSE_BACTN] Starch-binding protein present at the surface of the cell. Mediates starch-binding before starch transport in the periplasm for degradation. SusE and SusF do not constitute the major starch-binding proteins in starch degradation pathway. Has higher affinity for starch compared to SusF.<ref>PMID:10986238</ref> <ref>PMID:11717282</ref> <ref>PMID:22910908</ref>
[https://www.uniprot.org/uniprot/SUSE_BACTN SUSE_BACTN] Starch-binding protein present at the surface of the cell. Mediates starch-binding before starch transport in the periplasm for degradation. SusE and SusF do not constitute the major starch-binding proteins in starch degradation pathway. Has higher affinity for starch compared to SusF.<ref>PMID:10986238</ref> <ref>PMID:11717282</ref> <ref>PMID:22910908</ref>
-
<div style="background-color:#fffaf0;">
 
-
== Publication Abstract from PubMed ==
 
-
Human colonic bacteria are necessary for the digestion of many dietary polysaccharides. The intestinal symbiont Bacteroides thetaiotaomicron uses five outer membrane proteins to bind and degrade starch. Here, we report the x-ray crystallographic structures of SusE and SusF, two outer membrane proteins composed of tandem starch specific carbohydrate-binding modules (CBMs) with no enzymatic activity. Examination of the two CBMs in SusE and three CBMs in SusF reveals subtle differences in the way each binds starch and is reflected in their Kds for both high molecular weight starch and small maltooligosaccharides. Thus, each site seems to have a unique starch preference that may enable these proteins to interact with different regions of starch or its breakdown products. Proteins similar to SusE and SusF are encoded in many other polysaccharide utilization loci that are possessed by human gut bacteria in the phylum Bacteroidetes. Thus, these proteins are likely to play an important role in carbohydrate metabolism in these abundant symbiotic species. Understanding structural changes that diversify and adapt related proteins in the human gut microbial community will be critical to understanding the detailed mechanistic roles that they perform in the complex digestive ecosystem.
 
- 
-
Multi-domain carbohydrate-binding proteins involved in Bacteroides thetaiotaomicron starch metabolism.,Cameron EA, Maynard MA, Smith CJ, Smith TJ, Koropatkin NM, Martens EC J Biol Chem. 2012 Aug 21. PMID:22910908<ref>PMID:22910908</ref>
 
- 
-
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
 
-
</div>
 
-
<div class="pdbe-citations 4fch" style="background-color:#fffaf0;"></div>
 
== References ==
== References ==
<references/>
<references/>

Current revision

Crystal Structure SusE from Bacteroides thetaiotaomicron with maltoheptaose

PDB ID 4fch

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools