4g3v
From Proteopedia
(Difference between revisions)
Line 4: | Line 4: | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[4g3v]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Aquifex_aeolicus_VF5 Aquifex aeolicus VF5]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4G3V OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4G3V FirstGlance]. <br> | <table><tr><td colspan='2'>[[4g3v]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Aquifex_aeolicus_VF5 Aquifex aeolicus VF5]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4G3V OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4G3V FirstGlance]. <br> | ||
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.7Å</td></tr> |
+ | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene></td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4g3v FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4g3v OCA], [https://pdbe.org/4g3v PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4g3v RCSB], [https://www.ebi.ac.uk/pdbsum/4g3v PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4g3v ProSAT]</span></td></tr> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4g3v FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4g3v OCA], [https://pdbe.org/4g3v PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4g3v RCSB], [https://www.ebi.ac.uk/pdbsum/4g3v PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4g3v ProSAT]</span></td></tr> | ||
</table> | </table> | ||
== Function == | == Function == | ||
[https://www.uniprot.org/uniprot/O67661_AQUAE O67661_AQUAE] | [https://www.uniprot.org/uniprot/O67661_AQUAE O67661_AQUAE] | ||
- | <div style="background-color:#fffaf0;"> | ||
- | == Publication Abstract from PubMed == | ||
- | The sigma subunits of bacterial RNA polymerase occur in many variant forms and confer promoter specificity to the holopolymerase. Members of the sigma(54) family of sigma subunits require the action of a 'transcriptional activator' protein to open the promoter and initiate transcription. The activator proteins undergo regulated assembly from inactive dimers to hexamers that are active ATPases. These contact sigma(54) directly and, through ATP hydrolysis, drive a conformational change that enables promoter opening. sigma(54) activators use several different kinds of regulatory domains to respond to a wide variety of intracellular signals. One common regulatory module, the GAF domain, is used by sigma(54) activators to sense small-molecule ligands. The structural basis for GAF domain regulation in sigma(54) activators has not previously been reported. Here, we present crystal structures of GAF regulatory domains for Aquifex aeolicus sigma(54) activators NifA-like homolog (Nlh)2 and Nlh1 in three functional states-an 'open', ATPase-inactive state; a 'closed', ATPase-inactive state; and a 'closed', ligand-bound, ATPase-active state. We also present small-angle X-ray scattering data for Nlh2-linked GAF-ATPase domains in the inactive state. These GAF domain dimers regulate sigma(54) activator proteins by holding the ATPase domains in an inactive dimer conformation. Ligand binding of Nlh1 dramatically remodels the GAF domain dimer interface, disrupting the contacts with the ATPase domains. This mechanism has strong parallels to the response to phosphorylation in some two-component regulated sigma(54) activators. We describe a structural mechanism of GAF-mediated enzyme regulation that appears to be conserved among humans, plants, and bacteria. | ||
- | |||
- | Structural mechanism of GAF-regulated sigma(54) activators from Aquifex aeolicus.,Batchelor JD, Lee PS, Wang AC, Doucleff M, Wemmer DE J Mol Biol. 2013 Jan 9;425(1):156-70. doi: 10.1016/j.jmb.2012.10.017. Epub 2012, Nov 1. PMID:23123379<ref>PMID:23123379</ref> | ||
- | |||
- | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
- | </div> | ||
- | <div class="pdbe-citations 4g3v" style="background-color:#fffaf0;"></div> | ||
- | == References == | ||
- | <references/> | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> |
Current revision
Crystal structure of A. Aeolicus nlh2 gaf domain in an inactive state
|