4ji8
From Proteopedia
(Difference between revisions)
Line 4: | Line 4: | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[4ji8]] is a 10 chain structure with sequence from [https://en.wikipedia.org/wiki/Thermus_thermophilus_HB8 Thermus thermophilus HB8]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4JI8 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4JI8 FirstGlance]. <br> | <table><tr><td colspan='2'>[[4ji8]] is a 10 chain structure with sequence from [https://en.wikipedia.org/wiki/Thermus_thermophilus_HB8 Thermus thermophilus HB8]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4JI8 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4JI8 FirstGlance]. <br> | ||
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=2MG:2N-METHYLGUANOSINE-5-MONOPHOSPHATE'>2MG</scene>, <scene name='pdbligand=4OC:4N,O2-METHYLCYTIDINE-5-MONOPHOSPHATE'>4OC</scene>, <scene name='pdbligand=5MC:5-METHYLCYTIDINE-5-MONOPHOSPHATE'>5MC</scene>, <scene name='pdbligand=7MG:7N-METHYL-8-HYDROGUANOSINE-5-MONOPHOSPHATE'>7MG</scene>, <scene name='pdbligand=M2G:N2-DIMETHYLGUANOSINE-5-MONOPHOSPHATE'>M2G</scene>, <scene name='pdbligand=MA6:6N-DIMETHYLADENOSINE-5-MONOPHOSHATE'>MA6</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=PSU:PSEUDOURIDINE-5-MONOPHOSPHATE'>PSU</scene>, <scene name='pdbligand=SRY:STREPTOMYCIN'>SRY</scene>, <scene name='pdbligand=UR3:3-METHYLURIDINE-5-MONOPHOSHATE'>UR3</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 3.742Å</td></tr> |
+ | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=2MG:2N-METHYLGUANOSINE-5-MONOPHOSPHATE'>2MG</scene>, <scene name='pdbligand=4OC:4N,O2-METHYLCYTIDINE-5-MONOPHOSPHATE'>4OC</scene>, <scene name='pdbligand=5MC:5-METHYLCYTIDINE-5-MONOPHOSPHATE'>5MC</scene>, <scene name='pdbligand=7MG:7N-METHYL-8-HYDROGUANOSINE-5-MONOPHOSPHATE'>7MG</scene>, <scene name='pdbligand=M2G:N2-DIMETHYLGUANOSINE-5-MONOPHOSPHATE'>M2G</scene>, <scene name='pdbligand=MA6:6N-DIMETHYLADENOSINE-5-MONOPHOSHATE'>MA6</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=PSU:PSEUDOURIDINE-5-MONOPHOSPHATE'>PSU</scene>, <scene name='pdbligand=SRY:STREPTOMYCIN'>SRY</scene>, <scene name='pdbligand=UR3:3-METHYLURIDINE-5-MONOPHOSHATE'>UR3</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4ji8 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4ji8 OCA], [https://pdbe.org/4ji8 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4ji8 RCSB], [https://www.ebi.ac.uk/pdbsum/4ji8 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4ji8 ProSAT]</span></td></tr> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4ji8 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4ji8 OCA], [https://pdbe.org/4ji8 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4ji8 RCSB], [https://www.ebi.ac.uk/pdbsum/4ji8 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4ji8 ProSAT]</span></td></tr> | ||
</table> | </table> | ||
== Function == | == Function == | ||
[https://www.uniprot.org/uniprot/RS12_THET8 RS12_THET8] With S4 and S5 plays an important role in translational accuracy (By similarity).[HAMAP-Rule:MF_00403_B] Interacts with and stabilizes bases of the 16S rRNA that are involved in tRNA selection in the A site and with the mRNA backbone. Located at the interface of the 30S and 50S subunits, it traverses the body of the 30S subunit contacting proteins on the other side and probably holding the rRNA structure together. The combined cluster of proteins S8, S12 and S17 appears to hold together the shoulder and platform of the 30S subunit.[HAMAP-Rule:MF_00403_B] | [https://www.uniprot.org/uniprot/RS12_THET8 RS12_THET8] With S4 and S5 plays an important role in translational accuracy (By similarity).[HAMAP-Rule:MF_00403_B] Interacts with and stabilizes bases of the 16S rRNA that are involved in tRNA selection in the A site and with the mRNA backbone. Located at the interface of the 30S and 50S subunits, it traverses the body of the 30S subunit contacting proteins on the other side and probably holding the rRNA structure together. The combined cluster of proteins S8, S12 and S17 appears to hold together the shoulder and platform of the 30S subunit.[HAMAP-Rule:MF_00403_B] | ||
- | <div style="background-color:#fffaf0;"> | ||
- | == Publication Abstract from PubMed == | ||
- | The ribosome decodes mRNA by monitoring the geometry of codon-anticodon base-pairing using a set of universally conserved 16S rRNA nucleotides within the conformationally dynamic decoding site. By applying single-molecule FRET and X-ray crystallography, we have determined that conditional-lethal, streptomycin-dependence mutations in ribosomal protein S12 interfere with tRNA selection by allowing conformational distortions of the decoding site that impair GTPase activation of EF-Tu during the tRNA selection process. Distortions in the decoding site are reversed by streptomycin or by a second-site suppressor mutation in 16S rRNA. These observations encourage a refinement of the current model for decoding, wherein ribosomal protein S12 and the decoding site collaborate to optimize codon recognition and substrate discrimination during the early stages of the tRNA selection process. | ||
- | + | ==See Also== | |
- | + | *[[Ribosomal protein THX 3D structures|Ribosomal protein THX 3D structures]] | |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> |
Revision as of 12:03, 1 March 2024
Crystal Structure of 30S ribosomal subunit from Thermus thermophilus
|
Categories: Large Structures | Thermus thermophilus HB8 | Blanchard S | Carr J | Dahlberg AE | Demirci H | Gregory ST | Jogl G | Murphy E | Murphy IV F | Wang L