4kis
From Proteopedia
(Difference between revisions)
| Line 4: | Line 4: | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[4kis]] is a 12 chain structure with sequence from [https://en.wikipedia.org/wiki/Listeria_innocua_Clip11262 Listeria innocua Clip11262]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4KIS OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4KIS FirstGlance]. <br> | <table><tr><td colspan='2'>[[4kis]] is a 12 chain structure with sequence from [https://en.wikipedia.org/wiki/Listeria_innocua_Clip11262 Listeria innocua Clip11262]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4KIS OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4KIS FirstGlance]. <br> | ||
| - | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CA:CALCIUM+ION'>CA</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 3.2Å</td></tr> |
| + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CA:CALCIUM+ION'>CA</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4kis FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4kis OCA], [https://pdbe.org/4kis PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4kis RCSB], [https://www.ebi.ac.uk/pdbsum/4kis PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4kis ProSAT]</span></td></tr> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4kis FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4kis OCA], [https://pdbe.org/4kis PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4kis RCSB], [https://www.ebi.ac.uk/pdbsum/4kis PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4kis ProSAT]</span></td></tr> | ||
</table> | </table> | ||
== Function == | == Function == | ||
[https://www.uniprot.org/uniprot/Q928V6_LISIN Q928V6_LISIN] | [https://www.uniprot.org/uniprot/Q928V6_LISIN Q928V6_LISIN] | ||
| - | <div style="background-color:#fffaf0;"> | ||
| - | == Publication Abstract from PubMed == | ||
| - | Serine integrases catalyze the integration of bacteriophage DNA into a host genome by site-specific recombination between 'attachment sites' in the phage (attP) and the host (attB). The reaction is highly directional; the reverse excision reaction between the product attL and attR sites does not occur in the absence of a phage-encoded factor, nor does recombination occur between other pairings of attachment sites. A mechanistic understanding of how these enzymes achieve site-selectivity and directionality has been limited by a lack of structural models. Here, we report the structure of the C-terminal domains of a serine integrase bound to an attP DNA half-site. The structure leads directly to models for understanding how the integrase-bound attP and attB sites differ, why these enzymes preferentially form attP x attB synaptic complexes to initiate recombination, and how attL x attR recombination is prevented. In these models, different domain organizations on attP vs. attB half-sites allow attachment-site specific interactions to form between integrase subunits via an unusual protruding coiled-coil motif. These interactions are used to preferentially synapse integrase-bound attP and attB and inhibit synapsis of integrase-bound attL and attR. The results provide a structural framework for understanding, testing and engineering serine integrase function. | ||
| - | |||
| - | Attachment site recognition and regulation of directionality by the serine integrases.,Rutherford K, Yuan P, Perry K, Sharp R, Van Duyne GD Nucleic Acids Res. 2013 Sep 1;41(17):8341-56. doi: 10.1093/nar/gkt580. Epub 2013 , Jul 2. PMID:23821671<ref>PMID:23821671</ref> | ||
| - | |||
| - | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
| - | </div> | ||
| - | <div class="pdbe-citations 4kis" style="background-color:#fffaf0;"></div> | ||
| - | == References == | ||
| - | <references/> | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> | ||
Current revision
Crystal Structure of a LSR-DNA Complex
| |||||||||||
