4kti

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Current revision (12:15, 1 March 2024) (edit) (undo)
 
Line 4: Line 4:
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>[[4kti]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Xanthomonas_campestris_pv._campestris_str._ATCC_33913 Xanthomonas campestris pv. campestris str. ATCC 33913]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4KTI OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4KTI FirstGlance]. <br>
<table><tr><td colspan='2'>[[4kti]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Xanthomonas_campestris_pv._campestris_str._ATCC_33913 Xanthomonas campestris pv. campestris str. ATCC 33913]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4KTI OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4KTI FirstGlance]. <br>
-
</td></tr><tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4kti FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4kti OCA], [https://pdbe.org/4kti PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4kti RCSB], [https://www.ebi.ac.uk/pdbsum/4kti PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4kti ProSAT]</span></td></tr>
+
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.839&#8491;</td></tr>
 +
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4kti FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4kti OCA], [https://pdbe.org/4kti PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4kti RCSB], [https://www.ebi.ac.uk/pdbsum/4kti PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4kti ProSAT]</span></td></tr>
</table>
</table>
== Function ==
== Function ==
[https://www.uniprot.org/uniprot/OLEA_XANCP OLEA_XANCP] Involved in olefin biosynthesis (PubMed:21266575, PubMed:22524624, PubMed:27815501, PubMed:28223313). Catalyzes a non-decarboxylative head-to-head Claisen condensation of two acyl-CoA molecules, generating an (R)-2-alkyl-3-oxoalkanoate (PubMed:21266575, PubMed:22524624, PubMed:27815501). Is active with fatty acyl-CoA substrates that ranged from C(8) to C(16) in length, and is the most active with palmitoyl-CoA and myristoyl-CoA (PubMed:21266575).<ref>PMID:21266575</ref> <ref>PMID:22524624</ref> <ref>PMID:27815501</ref> <ref>PMID:28223313</ref>
[https://www.uniprot.org/uniprot/OLEA_XANCP OLEA_XANCP] Involved in olefin biosynthesis (PubMed:21266575, PubMed:22524624, PubMed:27815501, PubMed:28223313). Catalyzes a non-decarboxylative head-to-head Claisen condensation of two acyl-CoA molecules, generating an (R)-2-alkyl-3-oxoalkanoate (PubMed:21266575, PubMed:22524624, PubMed:27815501). Is active with fatty acyl-CoA substrates that ranged from C(8) to C(16) in length, and is the most active with palmitoyl-CoA and myristoyl-CoA (PubMed:21266575).<ref>PMID:21266575</ref> <ref>PMID:22524624</ref> <ref>PMID:27815501</ref> <ref>PMID:28223313</ref>
-
<div style="background-color:#fffaf0;">
 
-
== Publication Abstract from PubMed ==
 
-
Phylogenetically diverse microbes that produce long chain, olefinic hydrocarbons have received much attention as possible sources of renewable energy biocatalysts. One enzyme that is critical for this process is OleA, a thiolase superfamily enzyme that condenses two fatty acyl-CoA substrates to produce a beta-ketoacid product and initiates the biosynthesis of long chain olefins in bacteria. Thiolases typically utilize a ping-pong mechanism centered on an active site cysteine residue. Reaction with the first substrate produces a covalent cysteine-thioester tethered acyl group that is transferred to the second substrate through formation of a carbon-carbon bond. Although the basics of thiolase chemistry are precedented, the mechanism by which OleA accommodates two substrates with extended carbon chains and a coenzyme moiety-unusual for a thiolase-are unknown. Gaining insights into this process could enable manipulation of the system for large scale olefin production with hydrocarbon chains lengths equivalent to those of fossil fuels. In this study, mutagenesis of the active site cysteine in Xanthomonas campestris OleA (Cys143) enabled trapping of two catalytically relevant species in crystals. In the resulting structures, long chain alkyl groups (C12 and C14) and phosphopantetheinate define three substrate channels in a T-shaped configuration, explaining how OleA coordinates its two substrates and product. The C143A OleA co-crystal structure possesses a single bound acyl-CoA representing the Michaelis complex with the first substrate, whereas the C143S co-crystal structure contains both acyl-CoA and fatty acid, defining how a second substrate binds to the acyl-enzyme intermediate. An active site glutamate (Glubeta117) is positioned to deprotonate bound acyl-CoA and initiate carbon-carbon bond formation.
 
- 
-
Substrate Trapping in Crystals of the Thiolase OleA Identifies Three Channels That Enable Long Chain Olefin Biosynthesis.,Goblirsch BR, Jensen MR, Mohamed FA, Wackett LP, Wilmot CM J Biol Chem. 2016 Dec 23;291(52):26698-26706. doi: 10.1074/jbc.M116.760892. Epub , 2016 Nov 4. PMID:27815501<ref>PMID:27815501</ref>
 
- 
-
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
 
-
</div>
 
-
<div class="pdbe-citations 4kti" style="background-color:#fffaf0;"></div>
 
==See Also==
==See Also==

Current revision

Crystal Structure of C143A Xathomonas campestris OleA

PDB ID 4kti

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools