4ons
From Proteopedia
(Difference between revisions)
| Line 4: | Line 4: | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[4ons]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Mus_musculus Mus musculus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4ONS OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4ONS FirstGlance]. <br> | <table><tr><td colspan='2'>[[4ons]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Mus_musculus Mus musculus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4ONS OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4ONS FirstGlance]. <br> | ||
| - | </td></tr><tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4ons FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4ons OCA], [https://pdbe.org/4ons PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4ons RCSB], [https://www.ebi.ac.uk/pdbsum/4ons PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4ons ProSAT]</span></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.8Å</td></tr> |
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4ons FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4ons OCA], [https://pdbe.org/4ons PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4ons RCSB], [https://www.ebi.ac.uk/pdbsum/4ons PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4ons ProSAT]</span></td></tr> | ||
</table> | </table> | ||
== Function == | == Function == | ||
[https://www.uniprot.org/uniprot/CTNA2_MOUSE CTNA2_MOUSE] May function as a linker between cadherin adhesion receptors and the cytoskeleton to regulate cell-cell adhesion and differentiation in the nervous system. Regulates morphological plasticity of synapses and cerebellar and hippocampal lamination during development. Functions in the control of startle modulation.<ref>PMID:12089526</ref> <ref>PMID:12123610</ref> <ref>PMID:15034585</ref> | [https://www.uniprot.org/uniprot/CTNA2_MOUSE CTNA2_MOUSE] May function as a linker between cadherin adhesion receptors and the cytoskeleton to regulate cell-cell adhesion and differentiation in the nervous system. Regulates morphological plasticity of synapses and cerebellar and hippocampal lamination during development. Functions in the control of startle modulation.<ref>PMID:12089526</ref> <ref>PMID:12123610</ref> <ref>PMID:15034585</ref> | ||
| - | <div style="background-color:#fffaf0;"> | ||
| - | == Publication Abstract from PubMed == | ||
| - | The classical cadherin-beta-catenin-alpha-catenin complex mediates homophilic cell-cell adhesion and mechanically couples the actin cytoskeletons of adjacent cells. Although alpha-catenin binds to beta-catenin and to F-actin, beta-catenin significantly weakens the affinity of alpha-catenin for F-actin. Moreover, alpha-catenin self-associates into homodimers that block beta-catenin binding. We investigated quantitatively and structurally alphaE- and alphaN-catenin dimer formation, their interaction with beta-catenin and the cadherin-beta-catenin complex, and the effect of the alpha-catenin actin-binding domain on beta-catenin association. The two alpha-catenin variants differ in their self-association properties: at physiological temperatures alphaE-catenin homodimerizes 10x more weakly than does alphaN-catenin, but is kinetically trapped in its oligomeric state. Both alphaE- and alphaN-catenin bind to beta-catenin with a Kd of 20 nM, and this affinity is increased by an order of magnitude when cadherin is bound to beta-catenin. We describe the crystal structure of a complex representing the full beta-catenin-alphaN-catenin interface. A three-dimensional model of the cadherin-beta-catenin-alpha-catenin complex based on these new structural data suggests mechanisms for the enhanced stability of the ternary complex. The C-terminal actin-binding domain of alpha-catenin has no influence on the interactions with beta-catenin, arguing against models in which beta-catenin weakens actin binding by stabilizing inhibitory intramolecular interactions between the actin-binding domain and the rest of alpha-catenin. | ||
| - | |||
| - | Structural and Thermodynamic Characterization of Cadherin-beta-catenin-alpha-catenin Complex Formation.,Pokutta S, Choi HJ, Ahlsen G, Hansen SD, Weis WI J Biol Chem. 2014 Apr 1. PMID:24692547<ref>PMID:24692547</ref> | ||
| - | |||
| - | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
| - | </div> | ||
| - | <div class="pdbe-citations 4ons" style="background-color:#fffaf0;"></div> | ||
==See Also== | ==See Also== | ||
Current revision
Structural and thermodynamic characterization of cadherin-beta-catenin-alpha-catenin complex formation
| |||||||||||
Categories: Large Structures | Mus musculus | Ahlsen G | Choi H-J | Hansen SD | Pokutta S | Weis WI
