4q66

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Current revision (12:44, 1 March 2024) (edit) (undo)
 
Line 4: Line 4:
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>[[4q66]] is a 12 chain structure with sequence from [https://en.wikipedia.org/wiki/Saccharomyces_cerevisiae_R008 Saccharomyces cerevisiae R008] and [https://en.wikipedia.org/wiki/Saccharomyces_cerevisiae_S288C Saccharomyces cerevisiae S288C]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4Q66 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4Q66 FirstGlance]. <br>
<table><tr><td colspan='2'>[[4q66]] is a 12 chain structure with sequence from [https://en.wikipedia.org/wiki/Saccharomyces_cerevisiae_R008 Saccharomyces cerevisiae R008] and [https://en.wikipedia.org/wiki/Saccharomyces_cerevisiae_S288C Saccharomyces cerevisiae S288C]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4Q66 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4Q66 FirstGlance]. <br>
-
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=GNP:PHOSPHOAMINOPHOSPHONIC+ACID-GUANYLATE+ESTER'>GNP</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr>
+
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 3.354&#8491;</td></tr>
 +
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=GNP:PHOSPHOAMINOPHOSPHONIC+ACID-GUANYLATE+ESTER'>GNP</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4q66 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4q66 OCA], [https://pdbe.org/4q66 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4q66 RCSB], [https://www.ebi.ac.uk/pdbsum/4q66 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4q66 ProSAT]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4q66 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4q66 OCA], [https://pdbe.org/4q66 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4q66 RCSB], [https://www.ebi.ac.uk/pdbsum/4q66 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4q66 ProSAT]</span></td></tr>
</table>
</table>
== Function ==
== Function ==
[https://www.uniprot.org/uniprot/BCH1_YEAST BCH1_YEAST] Member of the CHS5-ARF1P-binding proteins (CHAPS) which mediates export of specific cargo proteins, including chitin synthase CHS3.<ref>PMID:16498409</ref> <ref>PMID:17000877</ref> <ref>PMID:16855022</ref>
[https://www.uniprot.org/uniprot/BCH1_YEAST BCH1_YEAST] Member of the CHS5-ARF1P-binding proteins (CHAPS) which mediates export of specific cargo proteins, including chitin synthase CHS3.<ref>PMID:16498409</ref> <ref>PMID:17000877</ref> <ref>PMID:16855022</ref>
-
<div style="background-color:#fffaf0;">
 
-
== Publication Abstract from PubMed ==
 
-
Cargo adaptor subunits of vesicle coat protein complexes sort transmembrane proteins to distinct membrane compartments in eukaryotic cells. The exomer complex is the only cargo adaptor known to sort proteins at the trans-Golgi network into secretory vesicles. Exomer function is regulated by the Arf1 GTPase, a master regulator of trafficking at the Golgi. We report the structure of exomer bound to two copies of Arf1. Exomer interacts with each Arf1 molecule via two surfaces, one of which is a noncanonical interface that regulates GTP hydrolysis. The structure uncovers an unexpected membrane-proximal hydrophobic element that exomer uses in cooperation with Arf1 to remodel membranes. Given the constrained motion of the exomer hinge region, we envision that exomer dynamically positions multiple membrane insertion elements to drive membrane fission. In contrast to other known cargo adaptors, exomer therefore couples two functions, cargo sorting and membrane fission, into a single complex.
 
- 
-
Structural basis for membrane binding and remodeling by the exomer secretory vesicle cargo adaptor.,Paczkowski JE, Fromme JC Dev Cell. 2014 Sep 8;30(5):610-24. doi: 10.1016/j.devcel.2014.07.014. PMID:25203211<ref>PMID:25203211</ref>
 
- 
-
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
 
-
</div>
 
-
<div class="pdbe-citations 4q66" style="background-color:#fffaf0;"></div>
 
== References ==
== References ==
<references/>
<references/>

Current revision

Structure of Exomer bound to Arf1.

PDB ID 4q66

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools