4qgi

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Current revision (12:46, 1 March 2024) (edit) (undo)
 
Line 4: Line 4:
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>[[4qgi]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Human_immunodeficiency_virus_type_1_lw12.3_isolate Human immunodeficiency virus type 1 lw12.3 isolate]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4QGI OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4QGI FirstGlance]. <br>
<table><tr><td colspan='2'>[[4qgi]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Human_immunodeficiency_virus_type_1_lw12.3_isolate Human immunodeficiency virus type 1 lw12.3 isolate]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4QGI OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4QGI FirstGlance]. <br>
-
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=ROC:(2S)-N-[(2S,3R)-4-[(2S,3S,4AS,8AS)-3-(TERT-BUTYLCARBAMOYL)-3,4,4A,5,6,7,8,8A-OCTAHYDRO-1H-ISOQUINOLIN-2-YL]-3-HYDROXY-1-PHENYL-BUTAN-2-YL]-2-(QUINOLIN-2-YLCARBONYLAMINO)BUTANEDIAMIDE'>ROC</scene></td></tr>
+
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.896&#8491;</td></tr>
 +
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=ROC:(2S)-N-[(2S,3R)-4-[(2S,3S,4AS,8AS)-3-(TERT-BUTYLCARBAMOYL)-3,4,4A,5,6,7,8,8A-OCTAHYDRO-1H-ISOQUINOLIN-2-YL]-3-HYDROXY-1-PHENYL-BUTAN-2-YL]-2-(QUINOLIN-2-YLCARBONYLAMINO)BUTANEDIAMIDE'>ROC</scene></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4qgi FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4qgi OCA], [https://pdbe.org/4qgi PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4qgi RCSB], [https://www.ebi.ac.uk/pdbsum/4qgi PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4qgi ProSAT]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4qgi FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4qgi OCA], [https://pdbe.org/4qgi PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4qgi RCSB], [https://www.ebi.ac.uk/pdbsum/4qgi PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4qgi ProSAT]</span></td></tr>
</table>
</table>
== Function ==
== Function ==
[https://www.uniprot.org/uniprot/POL_HV1LW POL_HV1LW] Gag-Pol polyprotein and Gag polyprotein may regulate their own translation, by the binding genomic RNA in the 5'-UTR. At low concentration, Gag-Pol and Gag would promote translation, whereas at high concentration, the polyproteins encapsidate genomic RNA and then shutt off translation (By similarity). Matrix protein p17 has two main functions: in infected cell, it targets Gag and Gag-pol polyproteins to the plasma membrane via a multipartite membrane-binding signal, that includes its myristoylated N-terminus. The second function is to play a role in nuclear localization of the viral genome at the very start of cell infection. Matrix protein is the part of the pre-integration complex. It binds in the cytoplasm the human BAF protein which prevent autointegration of the viral genome, and might be included in virions at the ration of zero to 3 BAF dimer per virion. The myristoylation signal and the NLS thus exert conflicting influences its subcellular localization. The key regulation of these motifs might be phosphorylation of a portion of MA molecules on the C-terminal tyrosine at the time of virus maturation, by virion-associated cellular tyrosine kinase. Implicated in the release from host cell mediated by Vpu (By similarity). Capsid protein p24 forms the conical core that encapsulates the genomic RNA-nucleocapsid complex in the virion. Most core are conical, with only 7% tubular. The core is constituted by capsid protein hexamer subunits. The core is disassembled soon after virion entry. Interaction with human PPIA/CYPA protects the virus from restriction by human TRIM5-alpha and from an unknown antiviral activity in human cells. This capsid restriction by TRIM5 is one of the factors which restricts HIV-1 to the human species (By similarity). Nucleocapsid protein p7 encapsulates and protects viral dimeric unspliced (genomic) RNA. Binds these RNAs through its zinc fingers. Facilitates rearangement of nucleic acid secondary structure during retrotranscription of genomic RNA. This capability is referred to as nucleic acid chaperone activity (By similarity). The aspartyl protease mediates proteolytic cleavages of Gag and Gag-Pol polyproteins during or shortly after the release of the virion from the plasma membrane. Cleavages take place as an ordered, step-wise cascade to yield mature proteins. This process is called maturation. Displays maximal activity during the budding process just prior to particle release from the cell. Also cleaves Nef and Vif, probably concomitantly with viral structural proteins on maturation of virus particles (By similarity). Reverse transcriptase/ribonuclease H (RT) is a multifunctional enzyme that converts the viral RNA genome into dsDNA in the cytoplasm, shortly after virus entry into the cell. This enzyme displays a DNA polymerase activity that can copy either DNA or RNA templates, and a ribonuclease H (RNase H) activity that cleaves the RNA strand of RNA-DNA heteroduplexes in a partially processive 3' to 5' endonucleasic mode. Conversion of viral genomic RNA into dsDNA requires many steps. A tRNA(3)-Lys binds to the primer-binding site (PBS) situated at the 5'-end of the viral RNA. RT uses the 3' end of the tRNA primer to perform a short round of RNA-dependent minus-strand DNA synthesis. The reading proceeds through the U5 region and ends after the repeated (R) region which is present at both ends of viral RNA. The portion of the RNA-DNA heteroduplex is digested by the RNase H, resulting in a ssDNA product attached to the tRNA primer. This ssDNA/tRNA hybridizes with the identical R region situated at the 3' end of viral RNA. This template exchange, known as minus-strand DNA strong stop transfer, can be either intra- or intermolecular. RT uses the 3' end of this newly synthesized short ssDNA to perform the RNA-dependent minus-strand DNA synthesis of the whole template. RNase H digests the RNA template except for two polypurine tracts (PPTs) situated at the 5'-end and near the center of the genome. It is not clear if both polymerase and RNase H activities are simultaneous. RNase H probably can proceed both in a polymerase-dependent (RNA cut into small fragments by the same RT performing DNA synthesis) and a polymerase-independent mode (cleavage of remaining RNA fragments by free RTs). Secondly, RT performs DNA-directed plus-strand DNA synthesis using the PPTs that have not been removed by RNase H as primers. PPTs and tRNA primers are then removed by RNase H. The 3' and 5' ssDNA PBS regions hybridize to form a circular dsDNA intermediate. Strand displacement synthesis by RT to the PBS and PPT ends produces a blunt ended, linear dsDNA copy of the viral genome that includes long terminal repeats (LTRs) at both ends (By similarity). Integrase catalyzes viral DNA integration into the host chromosome, by performing a series of DNA cutting and joining reactions. This enzyme activity takes place after virion entry into a cell and reverse transcription of the RNA genome in dsDNA. The first step in the integration process is 3' processing. This step requires a complex comprising the viral genome, matrix protein, Vpr and integrase. This complex is called the pre-integration complex (PIC). The integrase protein removes 2 nucleotides from each 3' end of the viral DNA, leaving recessed CA OH's at the 3' ends. In the second step, the PIC enters cell nucleus. This process is mediated through integrase and Vpr proteins, and allows the virus to infect a non dividing cell. This ability to enter the nucleus is specific of lentiviruses, other retroviruses cannot and rely on cell division to access cell chromosomes. In the third step, termed strand transfer, the integrase protein joins the previously processed 3' ends to the 5' ends of strands of target cellular DNA at the site of integration. The 5'-ends are produced by integrase-catalyzed staggered cuts, 5 bp apart. A Y-shaped, gapped, recombination intermediate results, with the 5'-ends of the viral DNA strands and the 3' ends of target DNA strands remaining unjoined, flanking a gap of 5 bp. The last step is viral DNA integration into host chromosome. This involves host DNA repair synthesis in which the 5 bp gaps between the unjoined strands are filled in and then ligated. Since this process occurs at both cuts flanking the HIV genome, a 5 bp duplication of host DNA is produced at the ends of HIV-1 integration. Alternatively, Integrase may catalyze the excision of viral DNA just after strand transfer, this is termed disintegration (By similarity).
[https://www.uniprot.org/uniprot/POL_HV1LW POL_HV1LW] Gag-Pol polyprotein and Gag polyprotein may regulate their own translation, by the binding genomic RNA in the 5'-UTR. At low concentration, Gag-Pol and Gag would promote translation, whereas at high concentration, the polyproteins encapsidate genomic RNA and then shutt off translation (By similarity). Matrix protein p17 has two main functions: in infected cell, it targets Gag and Gag-pol polyproteins to the plasma membrane via a multipartite membrane-binding signal, that includes its myristoylated N-terminus. The second function is to play a role in nuclear localization of the viral genome at the very start of cell infection. Matrix protein is the part of the pre-integration complex. It binds in the cytoplasm the human BAF protein which prevent autointegration of the viral genome, and might be included in virions at the ration of zero to 3 BAF dimer per virion. The myristoylation signal and the NLS thus exert conflicting influences its subcellular localization. The key regulation of these motifs might be phosphorylation of a portion of MA molecules on the C-terminal tyrosine at the time of virus maturation, by virion-associated cellular tyrosine kinase. Implicated in the release from host cell mediated by Vpu (By similarity). Capsid protein p24 forms the conical core that encapsulates the genomic RNA-nucleocapsid complex in the virion. Most core are conical, with only 7% tubular. The core is constituted by capsid protein hexamer subunits. The core is disassembled soon after virion entry. Interaction with human PPIA/CYPA protects the virus from restriction by human TRIM5-alpha and from an unknown antiviral activity in human cells. This capsid restriction by TRIM5 is one of the factors which restricts HIV-1 to the human species (By similarity). Nucleocapsid protein p7 encapsulates and protects viral dimeric unspliced (genomic) RNA. Binds these RNAs through its zinc fingers. Facilitates rearangement of nucleic acid secondary structure during retrotranscription of genomic RNA. This capability is referred to as nucleic acid chaperone activity (By similarity). The aspartyl protease mediates proteolytic cleavages of Gag and Gag-Pol polyproteins during or shortly after the release of the virion from the plasma membrane. Cleavages take place as an ordered, step-wise cascade to yield mature proteins. This process is called maturation. Displays maximal activity during the budding process just prior to particle release from the cell. Also cleaves Nef and Vif, probably concomitantly with viral structural proteins on maturation of virus particles (By similarity). Reverse transcriptase/ribonuclease H (RT) is a multifunctional enzyme that converts the viral RNA genome into dsDNA in the cytoplasm, shortly after virus entry into the cell. This enzyme displays a DNA polymerase activity that can copy either DNA or RNA templates, and a ribonuclease H (RNase H) activity that cleaves the RNA strand of RNA-DNA heteroduplexes in a partially processive 3' to 5' endonucleasic mode. Conversion of viral genomic RNA into dsDNA requires many steps. A tRNA(3)-Lys binds to the primer-binding site (PBS) situated at the 5'-end of the viral RNA. RT uses the 3' end of the tRNA primer to perform a short round of RNA-dependent minus-strand DNA synthesis. The reading proceeds through the U5 region and ends after the repeated (R) region which is present at both ends of viral RNA. The portion of the RNA-DNA heteroduplex is digested by the RNase H, resulting in a ssDNA product attached to the tRNA primer. This ssDNA/tRNA hybridizes with the identical R region situated at the 3' end of viral RNA. This template exchange, known as minus-strand DNA strong stop transfer, can be either intra- or intermolecular. RT uses the 3' end of this newly synthesized short ssDNA to perform the RNA-dependent minus-strand DNA synthesis of the whole template. RNase H digests the RNA template except for two polypurine tracts (PPTs) situated at the 5'-end and near the center of the genome. It is not clear if both polymerase and RNase H activities are simultaneous. RNase H probably can proceed both in a polymerase-dependent (RNA cut into small fragments by the same RT performing DNA synthesis) and a polymerase-independent mode (cleavage of remaining RNA fragments by free RTs). Secondly, RT performs DNA-directed plus-strand DNA synthesis using the PPTs that have not been removed by RNase H as primers. PPTs and tRNA primers are then removed by RNase H. The 3' and 5' ssDNA PBS regions hybridize to form a circular dsDNA intermediate. Strand displacement synthesis by RT to the PBS and PPT ends produces a blunt ended, linear dsDNA copy of the viral genome that includes long terminal repeats (LTRs) at both ends (By similarity). Integrase catalyzes viral DNA integration into the host chromosome, by performing a series of DNA cutting and joining reactions. This enzyme activity takes place after virion entry into a cell and reverse transcription of the RNA genome in dsDNA. The first step in the integration process is 3' processing. This step requires a complex comprising the viral genome, matrix protein, Vpr and integrase. This complex is called the pre-integration complex (PIC). The integrase protein removes 2 nucleotides from each 3' end of the viral DNA, leaving recessed CA OH's at the 3' ends. In the second step, the PIC enters cell nucleus. This process is mediated through integrase and Vpr proteins, and allows the virus to infect a non dividing cell. This ability to enter the nucleus is specific of lentiviruses, other retroviruses cannot and rely on cell division to access cell chromosomes. In the third step, termed strand transfer, the integrase protein joins the previously processed 3' ends to the 5' ends of strands of target cellular DNA at the site of integration. The 5'-ends are produced by integrase-catalyzed staggered cuts, 5 bp apart. A Y-shaped, gapped, recombination intermediate results, with the 5'-ends of the viral DNA strands and the 3' ends of target DNA strands remaining unjoined, flanking a gap of 5 bp. The last step is viral DNA integration into host chromosome. This involves host DNA repair synthesis in which the 5 bp gaps between the unjoined strands are filled in and then ligated. Since this process occurs at both cuts flanking the HIV genome, a 5 bp duplication of host DNA is produced at the ends of HIV-1 integration. Alternatively, Integrase may catalyze the excision of viral DNA just after strand transfer, this is termed disintegration (By similarity).
-
<div style="background-color:#fffaf0;">
 
-
== Publication Abstract from PubMed ==
 
-
HIV drug resistance continues to emerge, consequently there is an urgent need to develop next generation antiretroviral therapeutics 1. Here we report on the structural and kinetic effects of an HIV protease drug resistant variant with the double mutations Gly48Thr and Leu89Met (PRG48T/L89M), without the stabilizing mutations Gln7Lys, Leu33Ile, and Leu63Ile. Kinetic analyses reveal that PRG48T/L89M and PRWT share nearly identical Michaelis-Menten parameters; however, PRG48T/L89M exhibits weaker binding for IND (41-fold), SQV (18-fold), APV (15-fold), and NFV (9-fold) relative to PRWT. A 1.9 A crystal structure was solved for PRG48T/L89M bound with saquinavir (PRG48T/L89M-SQV) and compared to the crystal structure of PRWT bound with saquinavir (PRWT-SQV). PRG48T/L89M-SQV has an enlarged active site resulting in the loss of a hydrogen bond in the S3 subsite from Gly48 to P3 of SQV, as well as less favorable hydrophobic packing interactions between P1 Phe of SQV and the S1 subsite. PRG48T/L89M-SQV assumes a more open conformation relative to PRWT-SQV, as illustrated by the downward displacement of the fulcrum and elbows and weaker interatomic flap interactions. We also show that the Leu89Met mutation disrupts the hydrophobic sliding mechanism by causing a redistribution of van der Waals interactions in the hydrophobic core in PRG48T/L89M-SQV. Our mechanism for PRG48T/L89M-SQV drug resistance proposes that a defective hydrophobic sliding mechanism results in modified conformational dynamics of the protease. As a consequence, the protease is unable to achieve a fully closed conformation that results in an expanded active site and weaker inhibitor binding.
 
- 
-
Defective Hydrophobic Sliding Mechanism and Active Site Expansion in HIV-1 Protease Drug Resistant Variant Gly48Thr/Leu89Met: Mechanisms for the Loss of Saquinavir Binding Potency.,Goldfarb NE, Ohanessian M, Biswas S, McGee Jr TD, Mahon BP, Ostrov DA, Garcia JP, Tang Y, McKenna R, Roitberg AE, Dunn BM Biochemistry. 2014 Dec 16. PMID:25513833<ref>PMID:25513833</ref>
 
- 
-
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
 
-
</div>
 
-
<div class="pdbe-citations 4qgi" style="background-color:#fffaf0;"></div>
 
==See Also==
==See Also==
*[[Immunodeficiency virus protease 3D structures|Immunodeficiency virus protease 3D structures]]
*[[Immunodeficiency virus protease 3D structures|Immunodeficiency virus protease 3D structures]]
-
== References ==
 
-
<references/>
 
__TOC__
__TOC__
</StructureSection>
</StructureSection>

Current revision

X-ray crystal structure of HIV-1 protease variant G48T/L89M in complex with Saquinavir

PDB ID 4qgi

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools