4rqy
From Proteopedia
(Difference between revisions)
| Line 4: | Line 4: | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[4rqy]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Escherichia_coli Escherichia coli]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4RQY OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4RQY FirstGlance]. <br> | <table><tr><td colspan='2'>[[4rqy]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Escherichia_coli Escherichia coli]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4RQY OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4RQY FirstGlance]. <br> | ||
| - | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=PO4:PHOSPHATE+ION'>PO4</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.204Å</td></tr> |
| + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=PO4:PHOSPHATE+ION'>PO4</scene></td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4rqy FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4rqy OCA], [https://pdbe.org/4rqy PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4rqy RCSB], [https://www.ebi.ac.uk/pdbsum/4rqy PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4rqy ProSAT]</span></td></tr> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4rqy FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4rqy OCA], [https://pdbe.org/4rqy PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4rqy RCSB], [https://www.ebi.ac.uk/pdbsum/4rqy PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4rqy ProSAT]</span></td></tr> | ||
</table> | </table> | ||
== Function == | == Function == | ||
[https://www.uniprot.org/uniprot/DEGS_ECOLI DEGS_ECOLI] When heat shock or other environmental stresses disrupt protein folding in the periplasm, DegS senses the accumulation of unassembled outer membrane porins (OMPs) and then initiates RseA (anti sigma-E factor) degradation by cleaving it in its periplasmic domain, making it an attractive substrate for subsequent cleavage by RseP. This cascade that ultimately leads to the sigma-E-driven expression of a variety of factors dealing with folding stress in the periplasm and OMP assembly.<ref>PMID:12183369</ref> <ref>PMID:19695325</ref> | [https://www.uniprot.org/uniprot/DEGS_ECOLI DEGS_ECOLI] When heat shock or other environmental stresses disrupt protein folding in the periplasm, DegS senses the accumulation of unassembled outer membrane porins (OMPs) and then initiates RseA (anti sigma-E factor) degradation by cleaving it in its periplasmic domain, making it an attractive substrate for subsequent cleavage by RseP. This cascade that ultimately leads to the sigma-E-driven expression of a variety of factors dealing with folding stress in the periplasm and OMP assembly.<ref>PMID:12183369</ref> <ref>PMID:19695325</ref> | ||
| - | <div style="background-color:#fffaf0;"> | ||
| - | == Publication Abstract from PubMed == | ||
| - | In E. coli, outer-membrane stress causes a transcriptional response through a signaling cascade initiated by DegS cleavage of a transmembrane antisigma factor. Each subunit of DegS, an HtrA-family protease, contains a protease domain and a PDZ domain. The trimeric protease domain is autoinhibited by the unliganded PDZ domains. Allosteric activation requires binding of unassembled outer-membrane proteins (OMPs) to the PDZ domains and protein substrate binding. Here, we identify a set of DegS residues that cluster together at subunit-subunit interfaces in the trimer, link the active sites and substrate binding sites, and are crucial for stabilizing the active enzyme conformation in response to OMP signaling. These residues are conserved across the HtrA-protease family, including orthologs linked to human disease, supporting a common mechanism of allosteric activation. Indeed, mutation of residues at homologous positions in the DegP quality-control protease also eliminates allosteric activation. | ||
| - | |||
| - | A Conserved Activation Cluster Is Required for Allosteric Communication in HtrA-Family Proteases.,de Regt AK, Kim S, Sohn J, Grant RA, Baker TA, Sauer RT Structure. 2015 Mar 3;23(3):517-26. doi: 10.1016/j.str.2015.01.012. Epub 2015 Feb, 19. PMID:25703375<ref>PMID:25703375</ref> | ||
| - | |||
| - | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
| - | </div> | ||
| - | <div class="pdbe-citations 4rqy" style="background-color:#fffaf0;"></div> | ||
== References == | == References == | ||
<references/> | <references/> | ||
Current revision
RE-REFINED STRUCTURE OF 1TE0 - STRUCTURAL ANALYSIS of DEGS, A STRESS SENSOR OF THE BACTERIAL PERIPLASM
| |||||||||||
