4v6k
From Proteopedia
(Difference between revisions)
Line 4: | Line 4: | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[4v6k]] is a 10 chain structure with sequence from [https://en.wikipedia.org/wiki/Escherichia_coli_K-12 Escherichia coli K-12]. This structure supersedes the now removed PDB entries [http://oca.weizmann.ac.il/oca-bin/send-pdb?obs=1&id=3izu 3izu] and [http://oca.weizmann.ac.il/oca-bin/send-pdb?obs=1&id=3izw 3izw]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4V6K OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4V6K FirstGlance]. <br> | <table><tr><td colspan='2'>[[4v6k]] is a 10 chain structure with sequence from [https://en.wikipedia.org/wiki/Escherichia_coli_K-12 Escherichia coli K-12]. This structure supersedes the now removed PDB entries [http://oca.weizmann.ac.il/oca-bin/send-pdb?obs=1&id=3izu 3izu] and [http://oca.weizmann.ac.il/oca-bin/send-pdb?obs=1&id=3izw 3izw]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4V6K OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4V6K FirstGlance]. <br> | ||
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=1MG:1N-METHYLGUANOSINE-5-MONOPHOSPHATE'>1MG</scene>, <scene name='pdbligand=2MA:2-METHYLADENOSINE-5-MONOPHOSPHATE'>2MA</scene>, <scene name='pdbligand=2MG:2N-METHYLGUANOSINE-5-MONOPHOSPHATE'>2MG</scene>, <scene name='pdbligand=3AU:3-[(3S)-3-AMINO-3-CARBOXYPROPYL]URIDINE+5-(DIHYDROGEN+PHOSPHATE)'>3AU</scene>, <scene name='pdbligand=3TD:(1S)-1,4-ANHYDRO-1-(3-METHYL-2,4-DIOXO-1,2,3,4-TETRAHYDROPYRIMIDIN-5-YL)-5-O-PHOSPHONO-D-RIBITOL'>3TD</scene>, <scene name='pdbligand=4OC:4N,O2-METHYLCYTIDINE-5-MONOPHOSPHATE'>4OC</scene>, <scene name='pdbligand=4SU:4-THIOURIDINE-5-MONOPHOSPHATE'>4SU</scene>, <scene name='pdbligand=5MC:5-METHYLCYTIDINE-5-MONOPHOSPHATE'>5MC</scene>, <scene name='pdbligand=5MU:5-METHYLURIDINE+5-MONOPHOSPHATE'>5MU</scene>, <scene name='pdbligand=6MZ:N6-METHYLADENOSINE-5-MONOPHOSPHATE'>6MZ</scene>, <scene name='pdbligand=7MG:7N-METHYL-8-HYDROGUANOSINE-5-MONOPHOSPHATE'>7MG</scene>, <scene name='pdbligand=CH:N3-PROTONATED+CYTIDINE-5-MONOPHOSPHATE'>CH</scene>, <scene name='pdbligand=H2U:5,6-DIHYDROURIDINE-5-MONOPHOSPHATE'>H2U</scene>, <scene name='pdbligand=MA6:6N-DIMETHYLADENOSINE-5-MONOPHOSHATE'>MA6</scene>, <scene name='pdbligand=MIA:2-METHYLTHIO-N6-ISOPENTENYL-ADENOSINE-5-MONOPHOSPHATE'>MIA</scene>, <scene name='pdbligand=OMC:O2-METHYLYCYTIDINE-5-MONOPHOSPHATE'>OMC</scene>, <scene name='pdbligand=OMG:O2-METHYLGUANOSINE-5-MONOPHOSPHATE'>OMG</scene>, <scene name='pdbligand=OMU:O2-METHYLURIDINE+5-MONOPHOSPHATE'>OMU</scene>, <scene name='pdbligand=PSU:PSEUDOURIDINE-5-MONOPHOSPHATE'>PSU</scene>, <scene name='pdbligand=UR3:3-METHYLURIDINE-5-MONOPHOSHATE'>UR3</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Electron Microscopy, [[Resolution|Resolution]] 8.25Å</td></tr> |
+ | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=1MG:1N-METHYLGUANOSINE-5-MONOPHOSPHATE'>1MG</scene>, <scene name='pdbligand=2MA:2-METHYLADENOSINE-5-MONOPHOSPHATE'>2MA</scene>, <scene name='pdbligand=2MG:2N-METHYLGUANOSINE-5-MONOPHOSPHATE'>2MG</scene>, <scene name='pdbligand=3AU:3-[(3S)-3-AMINO-3-CARBOXYPROPYL]URIDINE+5-(DIHYDROGEN+PHOSPHATE)'>3AU</scene>, <scene name='pdbligand=3TD:(1S)-1,4-ANHYDRO-1-(3-METHYL-2,4-DIOXO-1,2,3,4-TETRAHYDROPYRIMIDIN-5-YL)-5-O-PHOSPHONO-D-RIBITOL'>3TD</scene>, <scene name='pdbligand=4OC:4N,O2-METHYLCYTIDINE-5-MONOPHOSPHATE'>4OC</scene>, <scene name='pdbligand=4SU:4-THIOURIDINE-5-MONOPHOSPHATE'>4SU</scene>, <scene name='pdbligand=5MC:5-METHYLCYTIDINE-5-MONOPHOSPHATE'>5MC</scene>, <scene name='pdbligand=5MU:5-METHYLURIDINE+5-MONOPHOSPHATE'>5MU</scene>, <scene name='pdbligand=6MZ:N6-METHYLADENOSINE-5-MONOPHOSPHATE'>6MZ</scene>, <scene name='pdbligand=7MG:7N-METHYL-8-HYDROGUANOSINE-5-MONOPHOSPHATE'>7MG</scene>, <scene name='pdbligand=CH:N3-PROTONATED+CYTIDINE-5-MONOPHOSPHATE'>CH</scene>, <scene name='pdbligand=H2U:5,6-DIHYDROURIDINE-5-MONOPHOSPHATE'>H2U</scene>, <scene name='pdbligand=MA6:6N-DIMETHYLADENOSINE-5-MONOPHOSHATE'>MA6</scene>, <scene name='pdbligand=MIA:2-METHYLTHIO-N6-ISOPENTENYL-ADENOSINE-5-MONOPHOSPHATE'>MIA</scene>, <scene name='pdbligand=OMC:O2-METHYLYCYTIDINE-5-MONOPHOSPHATE'>OMC</scene>, <scene name='pdbligand=OMG:O2-METHYLGUANOSINE-5-MONOPHOSPHATE'>OMG</scene>, <scene name='pdbligand=OMU:O2-METHYLURIDINE+5-MONOPHOSPHATE'>OMU</scene>, <scene name='pdbligand=PSU:PSEUDOURIDINE-5-MONOPHOSPHATE'>PSU</scene>, <scene name='pdbligand=UR3:3-METHYLURIDINE-5-MONOPHOSHATE'>UR3</scene></td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4v6k FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4v6k OCA], [https://pdbe.org/4v6k PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4v6k RCSB], [https://www.ebi.ac.uk/pdbsum/4v6k PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4v6k ProSAT]</span></td></tr> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4v6k FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4v6k OCA], [https://pdbe.org/4v6k PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4v6k RCSB], [https://www.ebi.ac.uk/pdbsum/4v6k PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4v6k ProSAT]</span></td></tr> | ||
</table> | </table> | ||
== Function == | == Function == | ||
[https://www.uniprot.org/uniprot/RL1_ECOLI RL1_ECOLI] One of the primary rRNA binding proteins, it binds very close to the 3'-end of the 23S rRNA. Forms part of the L1 stalk. It is often not seen in high-resolution crystal structures, but can be seen in cryo_EM and 3D reconstruction models. These indicate that the distal end of the stalk moves by approximately 20 angstroms (PubMed:12859903). This stalk movement is thought to be coupled to movement of deacylated tRNA into and out of the E site, and thus to participate in tRNA translocation (PubMed:12859903). Contacts the P and E site tRNAs.[HAMAP-Rule:MF_01318_B] Protein L1 is also a translational repressor protein, it controls the translation of the L11 operon by binding to its mRNA.[HAMAP-Rule:MF_01318_B] | [https://www.uniprot.org/uniprot/RL1_ECOLI RL1_ECOLI] One of the primary rRNA binding proteins, it binds very close to the 3'-end of the 23S rRNA. Forms part of the L1 stalk. It is often not seen in high-resolution crystal structures, but can be seen in cryo_EM and 3D reconstruction models. These indicate that the distal end of the stalk moves by approximately 20 angstroms (PubMed:12859903). This stalk movement is thought to be coupled to movement of deacylated tRNA into and out of the E site, and thus to participate in tRNA translocation (PubMed:12859903). Contacts the P and E site tRNAs.[HAMAP-Rule:MF_01318_B] Protein L1 is also a translational repressor protein, it controls the translation of the L11 operon by binding to its mRNA.[HAMAP-Rule:MF_01318_B] | ||
- | <div style="background-color:#fffaf0;"> | ||
- | == Publication Abstract from PubMed == | ||
- | The structural basis of the tRNA selection process is investigated by cryo-electron microscopy of ribosomes programmed with UGA codons and incubated with ternary complex (TC) containing the near-cognate Trp-tRNA(Trp) in the presence of kirromycin. Going through more than 350 000 images and employing image classification procedures, we find approximately 8% in which the TC is bound to the ribosome. The reconstructed 3D map provides a means to characterize the arrangement of the near-cognate aa-tRNA with respect to elongation factor Tu (EF-Tu) and the ribosome, as well as the domain movements of the ribosome. One of the interesting findings is that near-cognate tRNA's acceptor stem region is flexible and CCA end becomes disordered. The data bring direct structural insights into the induced-fit mechanism of decoding by the ribosome, as the analysis of the interactions between small and large ribosomal subunit, aa-tRNA and EF-Tu and comparison with the cognate case (UGG codon) offers clues on how the conformational signals conveyed to the GTPase differ in the two cases. | ||
- | |||
- | Structural insights into cognate versus near-cognate discrimination during decoding.,Agirrezabala X, Schreiner E, Trabuco LG, Lei J, Ortiz-Meoz RF, Schulten K, Green R, Frank J EMBO J. 2011 Mar 4. PMID:21378755<ref>PMID:21378755</ref> | ||
- | |||
- | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
- | </div> | ||
- | <div class="pdbe-citations 4v6k" style="background-color:#fffaf0;"></div> | ||
==See Also== | ==See Also== | ||
Line 23: | Line 15: | ||
*[[Ribosome 3D structures|Ribosome 3D structures]] | *[[Ribosome 3D structures|Ribosome 3D structures]] | ||
*[[Transfer RNA (tRNA)|Transfer RNA (tRNA)]] | *[[Transfer RNA (tRNA)|Transfer RNA (tRNA)]] | ||
- | == References == | ||
- | <references/> | ||
__TOC__ | __TOC__ | ||
</SX> | </SX> |
Revision as of 12:58, 1 March 2024
Structural insights into cognate vs. near-cognate discrimination during decoding.
|