5hq2
From Proteopedia
(Difference between revisions)
Line 9: | Line 9: | ||
== Function == | == Function == | ||
[https://www.uniprot.org/uniprot/H32_XENLA H32_XENLA] Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling. | [https://www.uniprot.org/uniprot/H32_XENLA H32_XENLA] Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling. | ||
- | <div style="background-color:#fffaf0;"> | ||
- | == Publication Abstract from PubMed == | ||
- | Set8 is the only mammalian monomethyltransferase responsible for H4K20me1, a methyl mark critical for genomic integrity of eukaryotic cells. We present here a structural model for how Set8 uses multivalent interactions to bind and methylate the nucleosome based on crystallographic and solution studies of the Set8/nucleosome complex. Our studies indicate that Set8 employs its i-SET and c-SET domains to engage nucleosomal DNA 1 to 1.5 turns from the nucleosomal dyad and in doing so, it positions the SET domain for catalysis with H4 Lys20. Surprisingly, we find that a basic N-terminal extension to the SET domain plays an even more prominent role in nucleosome binding, possibly by making an arginine anchor interaction with the nucleosome H2A/H2B acidic patch. We further show that proliferating cell nuclear antigen and the nucleosome compete for binding to Set8 through this basic extension, suggesting a mechanism for how nucleosome binding protects Set8 from proliferating cell nuclear antigen-dependent degradation during the cell cycle. | ||
- | |||
- | Multivalent Interactions by the Set8 Histone Methyltransferase With Its Nucleosome Substrate.,Girish TS, McGinty RK, Tan S J Mol Biol. 2016 Apr 24;428(8):1531-43. doi: 10.1016/j.jmb.2016.02.025. Epub 2016, Mar 4. PMID:26953260<ref>PMID:26953260</ref> | ||
- | |||
- | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
- | </div> | ||
- | <div class="pdbe-citations 5hq2" style="background-color:#fffaf0;"></div> | ||
==See Also== | ==See Also== | ||
*[[Histone 3D structures|Histone 3D structures]] | *[[Histone 3D structures|Histone 3D structures]] | ||
*[[Histone methyltransferase 3D structures|Histone methyltransferase 3D structures]] | *[[Histone methyltransferase 3D structures|Histone methyltransferase 3D structures]] | ||
- | == References == | ||
- | <references/> | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> |
Current revision
Structural model of Set8 histone H4 Lys20 methyltransferase bound to nucleosome core particle
|