5k2f
From Proteopedia
(Difference between revisions)
Line 10: | Line 10: | ||
== Function == | == Function == | ||
[https://www.uniprot.org/uniprot/ERF3_YEAST ERF3_YEAST] Involved in translation termination. Stimulates the activity of ERF1. Binds guanine nucleotides. Recruited by polyadenylate-binding protein PAB1 to poly(A)-tails of mRNAs. Interaction with PAB1 is also required for regulation of normal mRNA decay through translation termination-coupled poly(A) shortening.<ref>PMID:7556078</ref> <ref>PMID:12923185</ref> <ref>PMID:15337765</ref> | [https://www.uniprot.org/uniprot/ERF3_YEAST ERF3_YEAST] Involved in translation termination. Stimulates the activity of ERF1. Binds guanine nucleotides. Recruited by polyadenylate-binding protein PAB1 to poly(A)-tails of mRNAs. Interaction with PAB1 is also required for regulation of normal mRNA decay through translation termination-coupled poly(A) shortening.<ref>PMID:7556078</ref> <ref>PMID:12923185</ref> <ref>PMID:15337765</ref> | ||
- | <div style="background-color:#fffaf0;"> | ||
- | == Publication Abstract from PubMed == | ||
- | Electrons, because of their strong interaction with matter, produce high-resolution diffraction patterns from tiny 3D crystals only a few hundred nanometers thick in a frozen-hydrated state. This discovery offers the prospect of facile structure determination of complex biological macromolecules, which cannot be coaxed to form crystals large enough for conventional crystallography or cannot easily be produced in sufficient quantities. Two potential obstacles stand in the way. The first is a phenomenon known as dynamical scattering, in which multiple scattering events scramble the recorded electron diffraction intensities so that they are no longer informative of the crystallized molecule. The second obstacle is the lack of a proven means of de novo phase determination, as is required if the molecule crystallized is insufficiently similar to one that has been previously determined. We show with four structures of the amyloid core of the Sup35 prion protein that, if the diffraction resolution is high enough, sufficiently accurate phases can be obtained by direct methods with the cryo-EM method microelectron diffraction (MicroED), just as in X-ray diffraction. The success of these four experiments dispels the concern that dynamical scattering is an obstacle to ab initio phasing by MicroED and suggests that structures of novel macromolecules can also be determined by direct methods. | ||
- | |||
- | Ab initio structure determination from prion nanocrystals at atomic resolution by MicroED.,Sawaya MR, Rodriguez J, Cascio D, Collazo MJ, Shi D, Reyes FE, Hattne J, Gonen T, Eisenberg DS Proc Natl Acad Sci U S A. 2016 Sep 19. pii: 201606287. PMID:27647903<ref>PMID:27647903</ref> | ||
- | |||
- | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
- | </div> | ||
- | <div class="pdbe-citations 5k2f" style="background-color:#fffaf0;"></div> | ||
== References == | == References == | ||
<references/> | <references/> |
Current revision
Structure of NNQQNY from yeast prion Sup35 with cadmium acetate determined by MicroED
|