5val

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Current revision (14:31, 6 March 2024) (edit) (undo)
 
Line 1: Line 1:
==BRAF in Complex with N-(3-(tert-butyl)phenyl)-4-methyl-3-(6-morpholinopyrimidin-4-yl)benzamide==
==BRAF in Complex with N-(3-(tert-butyl)phenyl)-4-methyl-3-(6-morpholinopyrimidin-4-yl)benzamide==
-
<StructureSection load='5val' size='340' side='right' caption='[[5val]], [[Resolution|resolution]] 2.26&Aring;' scene=''>
+
<StructureSection load='5val' size='340' side='right'caption='[[5val]], [[Resolution|resolution]] 2.26&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
-
<table><tr><td colspan='2'>[[5val]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Human Human]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5VAL OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5VAL FirstGlance]. <br>
+
<table><tr><td colspan='2'>[[5val]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5VAL OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=5VAL FirstGlance]. <br>
-
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=92D:N-(3-tert-butylphenyl)-4-methyl-3-[6-(morpholin-4-yl)pyrimidin-4-yl]benzamide'>92D</scene></td></tr>
+
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.26&#8491;</td></tr>
-
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[5vam|5vam]]</td></tr>
+
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=92D:N-(3-tert-butylphenyl)-4-methyl-3-[6-(morpholin-4-yl)pyrimidin-4-yl]benzamide'>92D</scene></td></tr>
-
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">BRAF, BRAF1, RAFB1 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN])</td></tr>
+
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=5val FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5val OCA], [https://pdbe.org/5val PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=5val RCSB], [https://www.ebi.ac.uk/pdbsum/5val PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=5val ProSAT]</span></td></tr>
-
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Non-specific_serine/threonine_protein_kinase Non-specific serine/threonine protein kinase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.7.11.1 2.7.11.1] </span></td></tr>
+
-
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5val FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5val OCA], [http://pdbe.org/5val PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=5val RCSB], [http://www.ebi.ac.uk/pdbsum/5val PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=5val ProSAT]</span></td></tr>
+
</table>
</table>
== Disease ==
== Disease ==
-
[[http://www.uniprot.org/uniprot/BRAF_HUMAN BRAF_HUMAN]] Note=Defects in BRAF are found in a wide range of cancers.<ref>PMID:18974108</ref> Defects in BRAF may be a cause of colorectal cancer (CRC) [MIM:[http://omim.org/entry/114500 114500]].<ref>PMID:18974108</ref> Defects in BRAF are involved in lung cancer (LNCR) [MIM:[http://omim.org/entry/211980 211980]]. LNCR is a common malignancy affecting tissues of the lung. The most common form of lung cancer is non-small cell lung cancer (NSCLC) that can be divided into 3 major histologic subtypes: squamous cell carcinoma, adenocarcinoma, and large cell lung cancer. NSCLC is often diagnosed at an advanced stage and has a poor prognosis.<ref>PMID:18974108</ref> <ref>PMID:12460919</ref> Defects in BRAF are involved in non-Hodgkin lymphoma (NHL) [MIM:[http://omim.org/entry/605027 605027]]. NHL is a cancer that starts in cells of the lymph system, which is part of the body's immune system. NHLs can occur at any age and are often marked by enlarged lymph nodes, fever and weight loss.<ref>PMID:18974108</ref> <ref>PMID:14612909</ref> Defects in BRAF are a cause of cardiofaciocutaneous syndrome (CFC syndrome) [MIM:[http://omim.org/entry/115150 115150]]; also known as cardio-facio-cutaneous syndrome. CFC syndrome is characterized by a distinctive facial appearance, heart defects and mental retardation. Heart defects include pulmonic stenosis, atrial septal defects and hypertrophic cardiomyopathy. Some affected individuals present with ectodermal abnormalities such as sparse, friable hair, hyperkeratotic skin lesions and a generalized ichthyosis-like condition. Typical facial features are similar to Noonan syndrome. They include high forehead with bitemporal constriction, hypoplastic supraorbital ridges, downslanting palpebral fissures, a depressed nasal bridge, and posteriorly angulated ears with prominent helices. The inheritance of CFC syndrome is autosomal dominant.<ref>PMID:18974108</ref> Defects in BRAF are the cause of Noonan syndrome type 7 (NS7) [MIM:[http://omim.org/entry/613706 613706]]. Noonan syndrome is a disorder characterized by facial dysmorphic features such as hypertelorism, a downward eyeslant and low-set posteriorly rotated ears. Other features can include short stature, a short neck with webbing or redundancy of skin, cardiac anomalies, deafness, motor delay and variable intellectual deficits.<ref>PMID:18974108</ref> <ref>PMID:19206169</ref> Defects in BRAF are the cause of LEOPARD syndrome type 3 (LEOPARD3) [MIM:[http://omim.org/entry/613707 613707]]. LEOPARD3 is a disorder characterized by lentigines, electrocardiographic conduction abnormalities, ocular hypertelorism, pulmonic stenosis, abnormalities of genitalia, retardation of growth, and sensorineural deafness.<ref>PMID:18974108</ref> <ref>PMID:19206169</ref> Note=A chromosomal aberration involving BRAF is found in pilocytic astrocytomas. A tandem duplication of 2 Mb at 7q34 leads to the expression of a KIAA1549-BRAF fusion protein with a constitutive kinase activity and inducing cell transformation.<ref>PMID:18974108</ref>
+
[https://www.uniprot.org/uniprot/BRAF_HUMAN BRAF_HUMAN] Note=Defects in BRAF are found in a wide range of cancers.<ref>PMID:18974108</ref> Defects in BRAF may be a cause of colorectal cancer (CRC) [MIM:[https://omim.org/entry/114500 114500].<ref>PMID:18974108</ref> Defects in BRAF are involved in lung cancer (LNCR) [MIM:[https://omim.org/entry/211980 211980]. LNCR is a common malignancy affecting tissues of the lung. The most common form of lung cancer is non-small cell lung cancer (NSCLC) that can be divided into 3 major histologic subtypes: squamous cell carcinoma, adenocarcinoma, and large cell lung cancer. NSCLC is often diagnosed at an advanced stage and has a poor prognosis.<ref>PMID:18974108</ref> <ref>PMID:12460919</ref> Defects in BRAF are involved in non-Hodgkin lymphoma (NHL) [MIM:[https://omim.org/entry/605027 605027]. NHL is a cancer that starts in cells of the lymph system, which is part of the body's immune system. NHLs can occur at any age and are often marked by enlarged lymph nodes, fever and weight loss.<ref>PMID:18974108</ref> <ref>PMID:14612909</ref> Defects in BRAF are a cause of cardiofaciocutaneous syndrome (CFC syndrome) [MIM:[https://omim.org/entry/115150 115150]; also known as cardio-facio-cutaneous syndrome. CFC syndrome is characterized by a distinctive facial appearance, heart defects and mental retardation. Heart defects include pulmonic stenosis, atrial septal defects and hypertrophic cardiomyopathy. Some affected individuals present with ectodermal abnormalities such as sparse, friable hair, hyperkeratotic skin lesions and a generalized ichthyosis-like condition. Typical facial features are similar to Noonan syndrome. They include high forehead with bitemporal constriction, hypoplastic supraorbital ridges, downslanting palpebral fissures, a depressed nasal bridge, and posteriorly angulated ears with prominent helices. The inheritance of CFC syndrome is autosomal dominant.<ref>PMID:18974108</ref> Defects in BRAF are the cause of Noonan syndrome type 7 (NS7) [MIM:[https://omim.org/entry/613706 613706]. Noonan syndrome is a disorder characterized by facial dysmorphic features such as hypertelorism, a downward eyeslant and low-set posteriorly rotated ears. Other features can include short stature, a short neck with webbing or redundancy of skin, cardiac anomalies, deafness, motor delay and variable intellectual deficits.<ref>PMID:18974108</ref> <ref>PMID:19206169</ref> Defects in BRAF are the cause of LEOPARD syndrome type 3 (LEOPARD3) [MIM:[https://omim.org/entry/613707 613707]. LEOPARD3 is a disorder characterized by lentigines, electrocardiographic conduction abnormalities, ocular hypertelorism, pulmonic stenosis, abnormalities of genitalia, retardation of growth, and sensorineural deafness.<ref>PMID:18974108</ref> <ref>PMID:19206169</ref> Note=A chromosomal aberration involving BRAF is found in pilocytic astrocytomas. A tandem duplication of 2 Mb at 7q34 leads to the expression of a KIAA1549-BRAF fusion protein with a constitutive kinase activity and inducing cell transformation.<ref>PMID:18974108</ref>
== Function ==
== Function ==
-
[[http://www.uniprot.org/uniprot/BRAF_HUMAN BRAF_HUMAN]] Involved in the transduction of mitogenic signals from the cell membrane to the nucleus. May play a role in the postsynaptic responses of hippocampal neuron.
+
[https://www.uniprot.org/uniprot/BRAF_HUMAN BRAF_HUMAN] Involved in the transduction of mitogenic signals from the cell membrane to the nucleus. May play a role in the postsynaptic responses of hippocampal neuron.
-
<div style="background-color:#fffaf0;">
+
-
== Publication Abstract from PubMed ==
+
-
RAS oncogenes have been implicated in &gt;30% of human cancers, all representing high unmet medical need. The exquisite dependency on CRAF kinase in KRAS mutant tumors has been established in genetically engineered mouse models and human tumor cells. To date, many small molecule approaches are under investigation to target CRAF, yet kinase-selective and cellular potent inhibitors remain challenging to identify. Herein, we describe 14 (RAF709) [ Aversa , Biaryl amide compounds as kinase inhibitors and their preparation . WO 2014151616, 2014 ], a selective B/C RAF inhibitor, which was developed through a hypothesis-driven approach focusing on drug-like properties. A key challenge encountered in the medicinal chemistry campaign was maintaining a balance between good solubility and potent cellular activity (suppression of pMEK and proliferation) in KRAS mutant tumor cell lines. We investigated the small molecule crystal structure of lead molecule 7 and hypothesized that disruption of the crystal packing would improve solubility, which led to a change from N-methylpyridone to a tetrahydropyranyl oxy-pyridine derivative. 14 proved to be soluble, kinase selective, and efficacious in a KRAS mutant xenograft model.
+
-
Design and Discovery of N-(2-Methyl-5'-morpholino-6'-((tetrahydro-2H-pyran-4-yl)oxy)-[3,3'-bipyridin]-5-y l)-3-(trifluoromethyl)benzamide (RAF709): A Potent, Selective, and Efficacious RAF Inhibitor Targeting RAS Mutant Cancers.,Nishiguchi GA, Rico A, Tanner H, Aversa RJ, Taft BR, Subramanian S, Setti L, Burger MT, Wan L, Tamez V, Smith A, Lou Y, Barsanti PA, Appleton BA, Mamo M, Tandeske L, Dix I, Tellew JE, Huang S, Mathews Griner LA, Cooke VG, Van Abbema A, Merritt H, Ma S, Gampa K, Feng F, Yuan J, Wang Y, Haling JR, Vaziri S, Hekmat-Nejad M, Jansen JM, Polyakov V, Zang R, Sethuraman V, Amiri P, Singh M, Lees E, Shao W, Stuart DD, Dillon MP, Ramurthy S J Med Chem. 2017 Jun 22;60(12):4869-4881. doi: 10.1021/acs.jmedchem.6b01862. Epub, 2017 Jun 8. PMID:28557458<ref>PMID:28557458</ref>
+
==See Also==
-
 
+
*[[Serine/threonine protein kinase 3D structures|Serine/threonine protein kinase 3D structures]]
-
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
+
-
</div>
+
-
<div class="pdbe-citations 5val" style="background-color:#fffaf0;"></div>
+
== References ==
== References ==
<references/>
<references/>
__TOC__
__TOC__
</StructureSection>
</StructureSection>
-
[[Category: Human]]
+
[[Category: Homo sapiens]]
-
[[Category: Non-specific serine/threonine protein kinase]]
+
[[Category: Large Structures]]
-
[[Category: Appleton, B A]]
+
[[Category: Appleton BA]]
-
[[Category: Mamo, M]]
+
[[Category: Mamo M]]
-
[[Category: Braf serine/threonine-protein kinase b-raf]]
+
-
[[Category: Transferase-transferase inhibitor complex]]
+

Current revision

BRAF in Complex with N-(3-(tert-butyl)phenyl)-4-methyl-3-(6-morpholinopyrimidin-4-yl)benzamide

PDB ID 5val

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools