1s2m
From Proteopedia
(Difference between revisions)
Line 3: | Line 3: | ||
<StructureSection load='1s2m' size='340' side='right'caption='[[1s2m]], [[Resolution|resolution]] 2.10Å' scene=''> | <StructureSection load='1s2m' size='340' side='right'caption='[[1s2m]], [[Resolution|resolution]] 2.10Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
- | <table><tr><td colspan='2'>[[1s2m]] is a 1 chain structure with sequence from [ | + | <table><tr><td colspan='2'>[[1s2m]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Saccharomyces_cerevisiae Saccharomyces cerevisiae]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1S2M OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1S2M FirstGlance]. <br> |
- | </td></tr><tr id=' | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.1Å</td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[ | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1s2m FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1s2m OCA], [https://pdbe.org/1s2m PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1s2m RCSB], [https://www.ebi.ac.uk/pdbsum/1s2m PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1s2m ProSAT]</span></td></tr> |
</table> | </table> | ||
== Function == | == Function == | ||
- | [ | + | [https://www.uniprot.org/uniprot/DHH1_YEAST DHH1_YEAST] ATP-dependent RNA helicase involved in mRNA turnover, and more specifically in mRNA decapping by activating the decapping enzyme DCP1. Is involved in G1/S DNA-damage checkpoint recovery, probably through the regulation of the translational status of a subset of mRNAs. May also have a role in translation and mRNA nuclear export. Required for sporulation.<ref>PMID:9504907</ref> <ref>PMID:11780629</ref> <ref>PMID:12032091</ref> <ref>PMID:11696541</ref> <ref>PMID:12930949</ref> <ref>PMID:12730603</ref> <ref>PMID:15166134</ref> <ref>PMID:15703442</ref> <ref>PMID:15706350</ref> |
== Evolutionary Conservation == | == Evolutionary Conservation == | ||
[[Image:Consurf_key_small.gif|200px|right]] | [[Image:Consurf_key_small.gif|200px|right]] | ||
Line 19: | Line 19: | ||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1s2m ConSurf]. | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1s2m ConSurf]. | ||
<div style="clear:both"></div> | <div style="clear:both"></div> | ||
- | <div style="background-color:#fffaf0;"> | ||
- | == Publication Abstract from PubMed == | ||
- | The control of mRNA translation and degradation are critical for proper gene expression. A key regulator of both translation and degradation is Dhh1p, which is a DEAD-box protein, and functions both to repress translation and enhance decapping. We describe the crystal structure of the N- and C-terminal truncated Dhh1p (tDhh1p) determined at 2.1 A resolution. This reveals that, like other DEAD-box proteins, tDhh1p contains two RecA-like domains, although with a unique arrangement. In contrast to eIF4A and mjDEAD, in which no motif interactions exist, in Dhh1p, motif V interacts with motif I and the Q-motif, thereby linking the two domains together. Electrostatic potential mapping combined with mutagenesis reveals that motifs I, V, and VI are involved in RNA binding. In addition, trypsin digestion of tDhh1p suggests that ATP binding enhances an RNA-induced conformational change. Interestingly, some mutations located in the conserved motifs and at the interface between the two Dhh1 domains confer dominant negative phenotypes in vivo and disrupt the conformational switch in vitro. This suggests that this conformational change is required in Dhh1 function and identifies key residues involved in that transition. | ||
- | + | ==See Also== | |
- | + | *[[Helicase 3D structures|Helicase 3D structures]] | |
- | + | ||
- | + | ||
- | + | ||
== References == | == References == | ||
<references/> | <references/> | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> | ||
- | [[Category: Atcc 18824]] | ||
[[Category: Large Structures]] | [[Category: Large Structures]] | ||
- | [[Category: | + | [[Category: Saccharomyces cerevisiae]] |
- | [[Category: | + | [[Category: Cheng Z]] |
- | [[Category: | + | [[Category: Song H]] |
- | + | ||
- | + | ||
- | + |
Current revision
Crystal Structure of the DEAD box protein Dhh1p
|