|
|
Line 3: |
Line 3: |
| <StructureSection load='6p80' size='340' side='right'caption='[[6p80]], [[Resolution|resolution]] 1.50Å' scene=''> | | <StructureSection load='6p80' size='340' side='right'caption='[[6p80]], [[Resolution|resolution]] 1.50Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[6p80]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Escherichia_coli_ms_115-1 Escherichia coli ms 115-1]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6P80 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6P80 FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[6p80]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Escherichia_coli_MS_115-1 Escherichia coli MS 115-1]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6P80 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=6P80 FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=ATP:ADENOSINE-5-TRIPHOSPHATE'>ATP</scene>, <scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=MPD:(4S)-2-METHYL-2,4-PENTANEDIOL'>MPD</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.5Å</td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">HMPREF9540_01758 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=749537 Escherichia coli MS 115-1])</td></tr>
| + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ATP:ADENOSINE-5-TRIPHOSPHATE'>ATP</scene>, <scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=MPD:(4S)-2-METHYL-2,4-PENTANEDIOL'>MPD</scene></td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6p80 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6p80 OCA], [http://pdbe.org/6p80 PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6p80 RCSB], [http://www.ebi.ac.uk/pdbsum/6p80 PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6p80 ProSAT]</span></td></tr> | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=6p80 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6p80 OCA], [https://pdbe.org/6p80 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=6p80 RCSB], [https://www.ebi.ac.uk/pdbsum/6p80 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=6p80 ProSAT]</span></td></tr> |
| </table> | | </table> |
- | <div style="background-color:#fffaf0;">
| + | == Function == |
- | == Publication Abstract from PubMed == | + | [https://www.uniprot.org/uniprot/CDNC_ECOM1 CDNC_ECOM1] CBASS (cyclic oligonucleotide-based antiphage signaling system) provides immunity against bacteriophage. The CD-NTase protein synthesizes cyclic nucleotides in response to infection; these serve as specific second messenger signals. The signals activate a diverse range of effectors, leading to bacterial cell death and thus abortive phage infection. A type III-C(AAA) CBASS system (PubMed:32839535).<ref>PMID:31932165</ref> <ref>PMID:32839535</ref> Cyclic nucleotide synthase that upon activation catalyzes the synthesis of 3',3',3'-cyclic AMP-AMP-AMP (3',3',3'-c-tri-AMP or cAAA) as the major product, and 3',3'-c-di-AMP as a minor product. Cannot use GTP as a substrate.<ref>PMID:31932165</ref> Protects E.coli strain JP313 against bacteriophage lambda cI- infection. When the cdnC-cap7-cap6-nucC operon is transformed into a susceptible strain it confers bacteriophage immunity. Mutations in the sensor (Cap7 also called HORMA) or effector proteins (CdnC, NucC) but not the disassembly protein (Cap6 also called Trip13) no longer confer immunity. The presence of the intact operon leads to culture collapse and cell death, which occurs before the phage has finished its replication cycle, thus protecting non-infected bacteria by aborting the phage infection and preventing its propagation.<ref>PMID:31932165</ref> |
- | Bacteria are continually challenged by foreign invaders, including bacteriophages, and have evolved a variety of defenses against these invaders. Here, we describe the structural and biochemical mechanisms of a bacteriophage immunity pathway found in a broad array of bacteria, including E. coli and Pseudomonas aeruginosa. This pathway uses eukaryotic-like HORMA domain proteins that recognize specific peptides, then bind and activate a cGAS/DncV-like nucleotidyltransferase (CD-NTase) to generate a cyclic triadenylate (cAAA) second messenger; cAAA in turn activates an endonuclease effector, NucC. Signaling is attenuated by a homolog of the AAA+ ATPase Pch2/TRIP13, which binds and disassembles the active HORMA-CD-NTase complex. When expressed in non-pathogenic E. coli, this pathway confers immunity against bacteriophage lambda through an abortive infection mechanism. Our findings reveal the molecular mechanisms of a bacterial defense pathway integrating a cGAS-like nucleotidyltransferase with HORMA domain proteins for threat sensing through protein detection and negative regulation by a Trip13 ATPase.
| + | |
- | | + | |
- | HORMA Domain Proteins and a Trip13-like ATPase Regulate Bacterial cGAS-like Enzymes to Mediate Bacteriophage Immunity.,Ye Q, Lau RK, Mathews IT, Birkholz EA, Watrous JD, Azimi CS, Pogliano J, Jain M, Corbett KD Mol Cell. 2019 Dec 31. pii: S1097-2765(19)30922-0. doi:, 10.1016/j.molcel.2019.12.009. PMID:31932165<ref>PMID:31932165</ref>
| + | |
- | | + | |
- | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br>
| + | |
- | </div>
| + | |
- | <div class="pdbe-citations 6p80" style="background-color:#fffaf0;"></div>
| + | |
| == References == | | == References == |
| <references/> | | <references/> |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Escherichia coli ms 115-1]] | + | [[Category: Escherichia coli MS 115-1]] |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Azimi, C S]] | + | [[Category: Azimi CS]] |
- | [[Category: Corbett, K D]] | + | [[Category: Corbett KD]] |
- | [[Category: Ye, Q]] | + | [[Category: Ye Q]] |
- | [[Category: Cd-ntase]]
| + | |
- | [[Category: Cga]]
| + | |
- | [[Category: Protein binding]]
| + | |
- | [[Category: Second-messenger signaling]]
| + | |
| Structural highlights
Function
CDNC_ECOM1 CBASS (cyclic oligonucleotide-based antiphage signaling system) provides immunity against bacteriophage. The CD-NTase protein synthesizes cyclic nucleotides in response to infection; these serve as specific second messenger signals. The signals activate a diverse range of effectors, leading to bacterial cell death and thus abortive phage infection. A type III-C(AAA) CBASS system (PubMed:32839535).[1] [2] Cyclic nucleotide synthase that upon activation catalyzes the synthesis of 3',3',3'-cyclic AMP-AMP-AMP (3',3',3'-c-tri-AMP or cAAA) as the major product, and 3',3'-c-di-AMP as a minor product. Cannot use GTP as a substrate.[3] Protects E.coli strain JP313 against bacteriophage lambda cI- infection. When the cdnC-cap7-cap6-nucC operon is transformed into a susceptible strain it confers bacteriophage immunity. Mutations in the sensor (Cap7 also called HORMA) or effector proteins (CdnC, NucC) but not the disassembly protein (Cap6 also called Trip13) no longer confer immunity. The presence of the intact operon leads to culture collapse and cell death, which occurs before the phage has finished its replication cycle, thus protecting non-infected bacteria by aborting the phage infection and preventing its propagation.[4]
References
- ↑ Ye Q, Lau RK, Mathews IT, Birkholz EA, Watrous JD, Azimi CS, Pogliano J, Jain M, Corbett KD. HORMA Domain Proteins and a Trip13-like ATPase Regulate Bacterial cGAS-like Enzymes to Mediate Bacteriophage Immunity. Mol Cell. 2019 Dec 31. pii: S1097-2765(19)30922-0. doi:, 10.1016/j.molcel.2019.12.009. PMID:31932165 doi:http://dx.doi.org/10.1016/j.molcel.2019.12.009
- ↑ Millman A, Melamed S, Amitai G, Sorek R. Diversity and classification of cyclic-oligonucleotide-based anti-phage signalling systems. Nat Microbiol. 2020 Dec;5(12):1608-1615. doi: 10.1038/s41564-020-0777-y. Epub, 2020 Aug 24. PMID:32839535 doi:http://dx.doi.org/10.1038/s41564-020-0777-y
- ↑ Ye Q, Lau RK, Mathews IT, Birkholz EA, Watrous JD, Azimi CS, Pogliano J, Jain M, Corbett KD. HORMA Domain Proteins and a Trip13-like ATPase Regulate Bacterial cGAS-like Enzymes to Mediate Bacteriophage Immunity. Mol Cell. 2019 Dec 31. pii: S1097-2765(19)30922-0. doi:, 10.1016/j.molcel.2019.12.009. PMID:31932165 doi:http://dx.doi.org/10.1016/j.molcel.2019.12.009
- ↑ Ye Q, Lau RK, Mathews IT, Birkholz EA, Watrous JD, Azimi CS, Pogliano J, Jain M, Corbett KD. HORMA Domain Proteins and a Trip13-like ATPase Regulate Bacterial cGAS-like Enzymes to Mediate Bacteriophage Immunity. Mol Cell. 2019 Dec 31. pii: S1097-2765(19)30922-0. doi:, 10.1016/j.molcel.2019.12.009. PMID:31932165 doi:http://dx.doi.org/10.1016/j.molcel.2019.12.009
|