1aww

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 1: Line 1:
==SH3 DOMAIN FROM BRUTON'S TYROSINE KINASE, NMR, 42 STRUCTURES==
==SH3 DOMAIN FROM BRUTON'S TYROSINE KINASE, NMR, 42 STRUCTURES==
-
<StructureSection load='1aww' size='340' side='right'caption='[[1aww]], [[NMR_Ensembles_of_Models | 42 NMR models]]' scene=''>
+
<StructureSection load='1aww' size='340' side='right'caption='[[1aww]]' scene=''>
== Structural highlights ==
== Structural highlights ==
-
<table><tr><td colspan='2'>[[1aww]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Human Human]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1AWW OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1AWW FirstGlance]. <br>
+
<table><tr><td colspan='2'>[[1aww]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1AWW OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1AWW FirstGlance]. <br>
-
</td></tr><tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat"><div style='overflow: auto; max-height: 3em;'>[[1awx|1awx]]</div></td></tr>
+
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Solution NMR</td></tr>
-
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[https://en.wikipedia.org/wiki/Transferase Transferase], with EC number [https://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.7.10.1 and 2.7.10.2 2.7.10.1 and 2.7.10.2] </span></td></tr>
+
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1aww FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1aww OCA], [https://pdbe.org/1aww PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1aww RCSB], [https://www.ebi.ac.uk/pdbsum/1aww PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1aww ProSAT]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1aww FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1aww OCA], [https://pdbe.org/1aww PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1aww RCSB], [https://www.ebi.ac.uk/pdbsum/1aww PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1aww ProSAT]</span></td></tr>
</table>
</table>
== Disease ==
== Disease ==
-
[[https://www.uniprot.org/uniprot/BTK_HUMAN BTK_HUMAN]] Defects in BTK are the cause of X-linked agammaglobulinemia (XLA) [MIM:[https://omim.org/entry/300755 300755]]; also known as X-linked agammaglobulinemia type 1 (AGMX1) or immunodeficiency type 1 (IMD1). XLA is a humoral immunodeficiency disease which results in developmental defects in the maturation pathway of B-cells. Affected boys have normal levels of pre-B-cells in their bone marrow but virtually no circulating mature B-lymphocytes. This results in a lack of immunoglobulins of all classes and leads to recurrent bacterial infections like otitis, conjunctivitis, dermatitis, sinusitis in the first few years of life, or even some patients present overwhelming sepsis or meningitis, resulting in death in a few hours. Treatment in most cases is by infusion of intravenous immunoglobulin.<ref>PMID:7880320</ref> <ref>PMID:8013627</ref> <ref>PMID:8162056</ref> <ref>PMID:8162018</ref> <ref>PMID:7849697</ref> <ref>PMID:7849721</ref> <ref>PMID:7809124</ref> <ref>PMID:7849006</ref> <ref>PMID:7711734</ref> <ref>PMID:7633420</ref> <ref>PMID:7633429</ref> <ref>PMID:8634718</ref> <ref>PMID:7627183</ref> <ref>PMID:7897635</ref> <ref>PMID:8723128</ref> <ref>PMID:8695804</ref> <ref>PMID:8834236</ref> <ref>PMID:9280283</ref> <ref>PMID:9260159</ref> <ref>PMID:9545398</ref> <ref>PMID:9445504</ref> <ref>PMID:10220140</ref> <ref>PMID:10678660</ref> <ref>PMID:10612838</ref> Defects in BTK may be the cause of X-linked hypogammaglobulinemia and isolated growth hormone deficiency (XLA-IGHD) [MIM:[https://omim.org/entry/307200 307200]]; also known as agammaglobulinemia and isolated growth hormone deficiency or Fleisher syndrome or isolated growth hormone deficiency type 3 (IGHD3). In rare cases XLA is inherited together with isolated growth hormone deficiency (IGHD).
+
[https://www.uniprot.org/uniprot/BTK_HUMAN BTK_HUMAN] Defects in BTK are the cause of X-linked agammaglobulinemia (XLA) [MIM:[https://omim.org/entry/300755 300755]; also known as X-linked agammaglobulinemia type 1 (AGMX1) or immunodeficiency type 1 (IMD1). XLA is a humoral immunodeficiency disease which results in developmental defects in the maturation pathway of B-cells. Affected boys have normal levels of pre-B-cells in their bone marrow but virtually no circulating mature B-lymphocytes. This results in a lack of immunoglobulins of all classes and leads to recurrent bacterial infections like otitis, conjunctivitis, dermatitis, sinusitis in the first few years of life, or even some patients present overwhelming sepsis or meningitis, resulting in death in a few hours. Treatment in most cases is by infusion of intravenous immunoglobulin.<ref>PMID:7880320</ref> <ref>PMID:8013627</ref> <ref>PMID:8162056</ref> <ref>PMID:8162018</ref> <ref>PMID:7849697</ref> <ref>PMID:7849721</ref> <ref>PMID:7809124</ref> <ref>PMID:7849006</ref> <ref>PMID:7711734</ref> <ref>PMID:7633420</ref> <ref>PMID:7633429</ref> <ref>PMID:8634718</ref> <ref>PMID:7627183</ref> <ref>PMID:7897635</ref> <ref>PMID:8723128</ref> <ref>PMID:8695804</ref> <ref>PMID:8834236</ref> <ref>PMID:9280283</ref> <ref>PMID:9260159</ref> <ref>PMID:9545398</ref> <ref>PMID:9445504</ref> <ref>PMID:10220140</ref> <ref>PMID:10678660</ref> <ref>PMID:10612838</ref> Defects in BTK may be the cause of X-linked hypogammaglobulinemia and isolated growth hormone deficiency (XLA-IGHD) [MIM:[https://omim.org/entry/307200 307200]; also known as agammaglobulinemia and isolated growth hormone deficiency or Fleisher syndrome or isolated growth hormone deficiency type 3 (IGHD3). In rare cases XLA is inherited together with isolated growth hormone deficiency (IGHD).
== Function ==
== Function ==
-
[[https://www.uniprot.org/uniprot/BTK_HUMAN BTK_HUMAN]] Non-receptor tyrosine kinase indispensable for B lymphocyte development, differentiation and signaling. Binding of antigen to the B-cell antigen receptor (BCR) triggers signaling that ultimately leads to B-cell activation. After BCR engagement and activation at the plasma membrane, phosphorylates PLCG2 at several sites, igniting the downstream signaling pathway through calcium mobilization, followed by activation of the protein kinase C (PKC) family members. PLCG2 phosphorylation is performed in close cooperation with the adapter protein B-cell linker protein BLNK. BTK acts as a platform to bring together a diverse array of signaling proteins and is implicated in cytokine receptor signaling pathways. Plays an important role in the function of immune cells of innate as well as adaptive immunity, as a component of the Toll-like receptors (TLR) pathway. The TLR pathway acts as a primary surveillance system for the detection of pathogens and are crucial to the activation of host defense. Especially, is a critical molecule in regulating TLR9 activation in splenic B-cells. Within the TLR pathway, induces tyrosine phosphorylation of TIRAP which leads to TIRAP degradation. BTK plays also a critical role in transcription regulation. Induces the activity of NF-kappa-B, which is involved in regulating the expression of hundreds of genes. BTK is involved on the signaling pathway linking TLR8 and TLR9 to NF-kappa-B. Transiently phosphorylates transcription factor GTF2I on tyrosine residues in response to BCR. GTF2I then translocates to the nucleus to bind regulatory enhancer elements to modulate gene expression. ARID3A and NFAT are other transcriptional target of BTK. BTK is required for the formation of functional ARID3A DNA-binding complexes. There is however no evidence that BTK itself binds directly to DNA. BTK has a dual role in the regulation of apoptosis.<ref>PMID:9012831</ref> <ref>PMID:11606584</ref> <ref>PMID:16517732</ref> <ref>PMID:16738337</ref> <ref>PMID:16415872</ref> <ref>PMID:17932028</ref>
+
[https://www.uniprot.org/uniprot/BTK_HUMAN BTK_HUMAN] Non-receptor tyrosine kinase indispensable for B lymphocyte development, differentiation and signaling. Binding of antigen to the B-cell antigen receptor (BCR) triggers signaling that ultimately leads to B-cell activation. After BCR engagement and activation at the plasma membrane, phosphorylates PLCG2 at several sites, igniting the downstream signaling pathway through calcium mobilization, followed by activation of the protein kinase C (PKC) family members. PLCG2 phosphorylation is performed in close cooperation with the adapter protein B-cell linker protein BLNK. BTK acts as a platform to bring together a diverse array of signaling proteins and is implicated in cytokine receptor signaling pathways. Plays an important role in the function of immune cells of innate as well as adaptive immunity, as a component of the Toll-like receptors (TLR) pathway. The TLR pathway acts as a primary surveillance system for the detection of pathogens and are crucial to the activation of host defense. Especially, is a critical molecule in regulating TLR9 activation in splenic B-cells. Within the TLR pathway, induces tyrosine phosphorylation of TIRAP which leads to TIRAP degradation. BTK plays also a critical role in transcription regulation. Induces the activity of NF-kappa-B, which is involved in regulating the expression of hundreds of genes. BTK is involved on the signaling pathway linking TLR8 and TLR9 to NF-kappa-B. Transiently phosphorylates transcription factor GTF2I on tyrosine residues in response to BCR. GTF2I then translocates to the nucleus to bind regulatory enhancer elements to modulate gene expression. ARID3A and NFAT are other transcriptional target of BTK. BTK is required for the formation of functional ARID3A DNA-binding complexes. There is however no evidence that BTK itself binds directly to DNA. BTK has a dual role in the regulation of apoptosis.<ref>PMID:9012831</ref> <ref>PMID:11606584</ref> <ref>PMID:16517732</ref> <ref>PMID:16738337</ref> <ref>PMID:16415872</ref> <ref>PMID:17932028</ref>
== Evolutionary Conservation ==
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
[[Image:Consurf_key_small.gif|200px|right]]
Line 22: Line 21:
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1aww ConSurf].
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1aww ConSurf].
<div style="clear:both"></div>
<div style="clear:both"></div>
-
<div style="background-color:#fffaf0;">
 
-
== Publication Abstract from PubMed ==
 
-
X-linked agammaglobulinemia (XLA) is a heritable immunodeficiency caused by mutations in the gene coding for Bruton's tyrosine kinase (Btk). Btk belongs to the Tec family of tyrosine kinases. Each member of the family contains five regions and mutations causing XLA have been isolated in all five regions. We have determined the solution structure of the Src homology 3 (SH3) domain of Btk using two- and three-dimensional nuclear magnetic resonance (NMR) spectroscopy on natural abundance and 15N-labeled protein material. The structure determination is complemented by investigation of backbone dynamics based on 15N NMR relaxation. The Btk SH3 forms a well-defined structure and shows the typical SH3 topology of two short antiparallel beta-sheets packed almost perpendicular to each other in a sandwich-like fold. The N- and C-termini are more flexible as are peptide fragments in the RT and n-Src loops. The studied Btk SH3 fragment adopts two slowly interconverting conformations with a relative concentration ratio of 7:1. The overall fold of the minor form is similar to that of the major form, as judged on the basis of observed NOE connectivities and small chemical shift differences. A tryptophan (W251) ring flip is the favored mechanism for interconversion, although other possibilities cannot be excluded. The side chain of Y223, which becomes autophosphorylated upon activation of Btk, is exposed within the potential SH3 ligand binding site. Finally, we compare the present Btk SH3 structure with other SH3 structures.
 
- 
-
Solution structure of the SH3 domain from Bruton's tyrosine kinase.,Hansson H, Mattsson PT, Allard P, Haapaniemi P, Vihinen M, Smith CI, Hard T Biochemistry. 1998 Mar 3;37(9):2912-24. PMID:9485443<ref>PMID:9485443</ref>
 
- 
-
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
 
-
</div>
 
-
<div class="pdbe-citations 1aww" style="background-color:#fffaf0;"></div>
 
==See Also==
==See Also==
Line 38: Line 28:
__TOC__
__TOC__
</StructureSection>
</StructureSection>
-
[[Category: Human]]
+
[[Category: Homo sapiens]]
[[Category: Large Structures]]
[[Category: Large Structures]]
-
[[Category: Transferase]]
+
[[Category: Allard P]]
-
[[Category: Allard, P]]
+
[[Category: Haapaniemi P]]
-
[[Category: Haapaniemi, P]]
+
[[Category: Hansson H]]
-
[[Category: Hansson, H]]
+
[[Category: Hard T]]
-
[[Category: Hard, T]]
+
[[Category: Mattsson PT]]
-
[[Category: Mattsson, P T]]
+
[[Category: Smith CIE]]
-
[[Category: Smith, C I.E]]
+
[[Category: Vihinen M]]
-
[[Category: Vihinen, M]]
+
-
[[Category: Btk]]
+
-
[[Category: Sh3 domain]]
+
-
[[Category: Tyrosine kinase]]
+
-
[[Category: X-linked agammaglobulinemia]]
+
-
[[Category: Xla]]
+

Revision as of 15:29, 13 March 2024

SH3 DOMAIN FROM BRUTON'S TYROSINE KINASE, NMR, 42 STRUCTURES

PDB ID 1aww

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools