1can

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 3: Line 3:
<StructureSection load='1can' size='340' side='right'caption='[[1can]], [[Resolution|resolution]] 1.90&Aring;' scene=''>
<StructureSection load='1can' size='340' side='right'caption='[[1can]], [[Resolution|resolution]] 1.90&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
-
<table><tr><td colspan='2'>[[1can]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Human Human]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1CAN OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1CAN FirstGlance]. <br>
+
<table><tr><td colspan='2'>[[1can]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1CAN OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1CAN FirstGlance]. <br>
-
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=HG:MERCURY+(II)+ION'>HG</scene>, <scene name='pdbligand=NO3:NITRATE+ION'>NO3</scene></td></tr>
+
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.9&#8491;</td></tr>
-
<tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=ACE:ACETYL+GROUP'>ACE</scene></td></tr>
+
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ACE:ACETYL+GROUP'>ACE</scene>, <scene name='pdbligand=HG:MERCURY+(II)+ION'>HG</scene>, <scene name='pdbligand=NO3:NITRATE+ION'>NO3</scene></td></tr>
-
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[https://en.wikipedia.org/wiki/Carbonate_dehydratase Carbonate dehydratase], with EC number [https://www.brenda-enzymes.info/php/result_flat.php4?ecno=4.2.1.1 4.2.1.1] </span></td></tr>
+
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1can FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1can OCA], [https://pdbe.org/1can PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1can RCSB], [https://www.ebi.ac.uk/pdbsum/1can PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1can ProSAT]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1can FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1can OCA], [https://pdbe.org/1can PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1can RCSB], [https://www.ebi.ac.uk/pdbsum/1can PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1can ProSAT]</span></td></tr>
</table>
</table>
== Disease ==
== Disease ==
-
[[https://www.uniprot.org/uniprot/CAH2_HUMAN CAH2_HUMAN]] Defects in CA2 are the cause of osteopetrosis autosomal recessive type 3 (OPTB3) [MIM:[https://omim.org/entry/259730 259730]]; also known as osteopetrosis with renal tubular acidosis, carbonic anhydrase II deficiency syndrome, Guibaud-Vainsel syndrome or marble brain disease. Osteopetrosis is a rare genetic disease characterized by abnormally dense bone, due to defective resorption of immature bone. The disorder occurs in two forms: a severe autosomal recessive form occurring in utero, infancy, or childhood, and a benign autosomal dominant form occurring in adolescence or adulthood. Autosomal recessive osteopetrosis is usually associated with normal or elevated amount of non-functional osteoclasts. OPTB3 is associated with renal tubular acidosis, cerebral calcification (marble brain disease) and in some cases with mental retardation.<ref>PMID:1928091</ref> <ref>PMID:1542674</ref> <ref>PMID:8834238</ref> <ref>PMID:9143915</ref> <ref>PMID:15300855</ref>
+
[https://www.uniprot.org/uniprot/CAH2_HUMAN CAH2_HUMAN] Defects in CA2 are the cause of osteopetrosis autosomal recessive type 3 (OPTB3) [MIM:[https://omim.org/entry/259730 259730]; also known as osteopetrosis with renal tubular acidosis, carbonic anhydrase II deficiency syndrome, Guibaud-Vainsel syndrome or marble brain disease. Osteopetrosis is a rare genetic disease characterized by abnormally dense bone, due to defective resorption of immature bone. The disorder occurs in two forms: a severe autosomal recessive form occurring in utero, infancy, or childhood, and a benign autosomal dominant form occurring in adolescence or adulthood. Autosomal recessive osteopetrosis is usually associated with normal or elevated amount of non-functional osteoclasts. OPTB3 is associated with renal tubular acidosis, cerebral calcification (marble brain disease) and in some cases with mental retardation.<ref>PMID:1928091</ref> <ref>PMID:1542674</ref> <ref>PMID:8834238</ref> <ref>PMID:9143915</ref> <ref>PMID:15300855</ref>
== Function ==
== Function ==
-
[[https://www.uniprot.org/uniprot/CAH2_HUMAN CAH2_HUMAN]] Essential for bone resorption and osteoclast differentiation (By similarity). Reversible hydration of carbon dioxide. Can hydrate cyanamide to urea. Involved in the regulation of fluid secretion into the anterior chamber of the eye.<ref>PMID:10550681</ref> <ref>PMID:11831900</ref>
+
[https://www.uniprot.org/uniprot/CAH2_HUMAN CAH2_HUMAN] Essential for bone resorption and osteoclast differentiation (By similarity). Reversible hydration of carbon dioxide. Can hydrate cyanamide to urea. Involved in the regulation of fluid secretion into the anterior chamber of the eye.<ref>PMID:10550681</ref> <ref>PMID:11831900</ref>
== Evolutionary Conservation ==
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
[[Image:Consurf_key_small.gif|200px|right]]
Line 23: Line 22:
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1can ConSurf].
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1can ConSurf].
<div style="clear:both"></div>
<div style="clear:both"></div>
-
<div style="background-color:#fffaf0;">
 
-
== Publication Abstract from PubMed ==
 
-
The structures of human carbonic-anhydrase-II complexes with the anionic inhibitors hydrogen sulphide (HS-) and nitrate (NO3-) have been determined by X-ray diffraction at 0.19-nm resolution from crystals soaked at pH 7.8 and 6.0, respectively. The modes of binding of these two anions differ markedly from each other. The strong inhibitor HS- replaces the native zinc-bound water/hydroxide (Wat263) leaving the tetrahedral metal geometry unaltered and acts as a hydrogen-bonding donor towards Thr199 gamma. The weak NO3- inhibitor does not displace Wat263 from the metal coordination but occupies a fifth binding site changing the zinc coordination polyhedron into a slightly distorted trigonal bipyramid. The interaction of NO3- with the metal is weak; the nearest of its oxygen atoms being at a distance of 0.28 nm from the zinc ion. The binding of nitrate to the enzyme is completed by a hydrogen bond to the metal coordinated Wat263 and a second one to a water molecule of the active-site cavity. The structures of the two complexes help to rationalize the binding of anionic inhibitors to carbonic anhydrase and the binding mode displayed by NO39 may be relevant to the catalytic mechanism.
 
- 
-
Crystallographic studies of the binding of protonated and unprotonated inhibitors to carbonic anhydrase using hydrogen sulphide and nitrate anions.,Mangani S, Hakansson K Eur J Biochem. 1992 Dec 15;210(3):867-71. PMID:1336460<ref>PMID:1336460</ref>
 
- 
-
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
 
-
</div>
 
-
<div class="pdbe-citations 1can" style="background-color:#fffaf0;"></div>
 
==See Also==
==See Also==
Line 39: Line 29:
__TOC__
__TOC__
</StructureSection>
</StructureSection>
-
[[Category: Carbonate dehydratase]]
+
[[Category: Homo sapiens]]
-
[[Category: Human]]
+
[[Category: Large Structures]]
[[Category: Large Structures]]
-
[[Category: Hakansson, K]]
+
[[Category: Hakansson K]]
-
[[Category: Mangani, S]]
+
[[Category: Mangani S]]

Revision as of 15:38, 13 March 2024

CRYSTALLOGRAPHIC STUDIES OF THE BINDING OF PROTONATED AND UNPROTONATED INHIBITORS TO CARBONIC ANHYDRASE USING HYDROGEN SULPHIDE AND NITRATE ANIONS

PDB ID 1can

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools