|
|
Line 3: |
Line 3: |
| <StructureSection load='3tk0' size='340' side='right'caption='[[3tk0]], [[Resolution|resolution]] 1.61Å' scene=''> | | <StructureSection load='3tk0' size='340' side='right'caption='[[3tk0]], [[Resolution|resolution]] 1.61Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[3tk0]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Human Human]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3TK0 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3TK0 FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[3tk0]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3TK0 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3TK0 FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=FAD:FLAVIN-ADENINE+DINUCLEOTIDE'>FAD</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.611Å</td></tr> |
- | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat"><div style='overflow: auto; max-height: 3em;'>[[3mbg|3mbg]]</div></td></tr>
| + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=FAD:FLAVIN-ADENINE+DINUCLEOTIDE'>FAD</scene></td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">GFER, ALR, HERV1, HPO ([https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN])</td></tr> | + | |
- | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[https://en.wikipedia.org/wiki/Thiol_oxidase Thiol oxidase], with EC number [https://www.brenda-enzymes.info/php/result_flat.php4?ecno=1.8.3.2 1.8.3.2] </span></td></tr>
| + | |
| <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3tk0 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3tk0 OCA], [https://pdbe.org/3tk0 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3tk0 RCSB], [https://www.ebi.ac.uk/pdbsum/3tk0 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3tk0 ProSAT]</span></td></tr> | | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3tk0 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3tk0 OCA], [https://pdbe.org/3tk0 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3tk0 RCSB], [https://www.ebi.ac.uk/pdbsum/3tk0 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3tk0 ProSAT]</span></td></tr> |
| </table> | | </table> |
| == Disease == | | == Disease == |
- | [[https://www.uniprot.org/uniprot/ALR_HUMAN ALR_HUMAN]] Congenital cataract - progressive muscular hypotonia - hearing loss - developmental delay. The disease is caused by mutations affecting the gene represented in this entry.
| + | [https://www.uniprot.org/uniprot/ALR_HUMAN ALR_HUMAN] Congenital cataract - progressive muscular hypotonia - hearing loss - developmental delay. The disease is caused by mutations affecting the gene represented in this entry. |
| == Function == | | == Function == |
- | [[https://www.uniprot.org/uniprot/ALR_HUMAN ALR_HUMAN]] Isoform 1: FAD-dependent sulfhydryl oxidase that regenerates the redox-active disulfide bonds in CHCHD4/MIA40, a chaperone essential for disulfide bond formation and protein folding in the mitochondrial intermembrane space. The reduced form of CHCHD4/MIA40 forms a transient intermolecular disulfide bridge with GFER/ERV1, resulting in regeneration of the essential disulfide bonds in CHCHD4/MIA40, while GFER/ERV1 becomes re-oxidized by donating electrons to cytochrome c or molecular oxygen.<ref>PMID:19397338</ref> <ref>PMID:23186364</ref> <ref>PMID:20593814</ref> <ref>PMID:21383138</ref> <ref>PMID:22224850</ref> Isoform 2: May act as an autocrine hepatotrophic growth factor promoting liver regeneration.<ref>PMID:19397338</ref> <ref>PMID:23186364</ref> <ref>PMID:20593814</ref> <ref>PMID:21383138</ref> <ref>PMID:22224850</ref>
| + | [https://www.uniprot.org/uniprot/ALR_HUMAN ALR_HUMAN] Isoform 1: FAD-dependent sulfhydryl oxidase that regenerates the redox-active disulfide bonds in CHCHD4/MIA40, a chaperone essential for disulfide bond formation and protein folding in the mitochondrial intermembrane space. The reduced form of CHCHD4/MIA40 forms a transient intermolecular disulfide bridge with GFER/ERV1, resulting in regeneration of the essential disulfide bonds in CHCHD4/MIA40, while GFER/ERV1 becomes re-oxidized by donating electrons to cytochrome c or molecular oxygen.<ref>PMID:19397338</ref> <ref>PMID:23186364</ref> <ref>PMID:20593814</ref> <ref>PMID:21383138</ref> <ref>PMID:22224850</ref> Isoform 2: May act as an autocrine hepatotrophic growth factor promoting liver regeneration.<ref>PMID:19397338</ref> <ref>PMID:23186364</ref> <ref>PMID:20593814</ref> <ref>PMID:21383138</ref> <ref>PMID:22224850</ref> |
| | | |
| ==See Also== | | ==See Also== |
Line 21: |
Line 19: |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Human]] | + | [[Category: Homo sapiens]] |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Thiol oxidase]]
| + | [[Category: Bahnson BJ]] |
- | [[Category: Bahnson, B J]] | + | [[Category: Dong M]] |
- | [[Category: Dong, M]] | + | |
- | [[Category: Alr]]
| + | |
- | [[Category: Fad]]
| + | |
- | [[Category: Flavin]]
| + | |
- | [[Category: Flavoprotein]]
| + | |
- | [[Category: Gfer]]
| + | |
- | [[Category: Sulfhydryl oxidase]]
| + | |
| Structural highlights
Disease
ALR_HUMAN Congenital cataract - progressive muscular hypotonia - hearing loss - developmental delay. The disease is caused by mutations affecting the gene represented in this entry.
Function
ALR_HUMAN Isoform 1: FAD-dependent sulfhydryl oxidase that regenerates the redox-active disulfide bonds in CHCHD4/MIA40, a chaperone essential for disulfide bond formation and protein folding in the mitochondrial intermembrane space. The reduced form of CHCHD4/MIA40 forms a transient intermolecular disulfide bridge with GFER/ERV1, resulting in regeneration of the essential disulfide bonds in CHCHD4/MIA40, while GFER/ERV1 becomes re-oxidized by donating electrons to cytochrome c or molecular oxygen.[1] [2] [3] [4] [5] Isoform 2: May act as an autocrine hepatotrophic growth factor promoting liver regeneration.[6] [7] [8] [9] [10]
See Also
References
- ↑ Daithankar VN, Farrell SR, Thorpe C. Augmenter of liver regeneration: substrate specificity of a flavin-dependent oxidoreductase from the mitochondrial intermembrane space. Biochemistry. 2009 Jun 9;48(22):4828-37. doi: 10.1021/bi900347v. PMID:19397338 doi:http://dx.doi.org/10.1021/bi900347v
- ↑ Sztolsztener ME, Brewinska A, Guiard B, Chacinska A. Disulfide bond formation: sulfhydryl oxidase ALR controls mitochondrial biogenesis of human MIA40. Traffic. 2013 Mar;14(3):309-20. doi: 10.1111/tra.12030. Epub 2012 Dec 16. PMID:23186364 doi:http://dx.doi.org/10.1111/tra.12030
- ↑ Daithankar VN, Schaefer SA, Dong M, Bahnson BJ, Thorpe C. Structure of the human sulfhydryl oxidase augmenter of liver regeneration and characterization of a human mutation causing an autosomal recessive myopathy. Biochemistry. 2010 Jul 1. PMID:20593814 doi:10.1021/bi100912m
- ↑ Banci L, Bertini I, Calderone V, Cefaro C, Ciofi-Baffoni S, Gallo A, Kallergi E, Lionaki E, Pozidis C, Tokatlidis K. Molecular recognition and substrate mimicry drive the electron-transfer process between MIA40 and ALR. Proc Natl Acad Sci U S A. 2011 Mar 22;108(12):4811-6. Epub 2011 Mar 7. PMID:21383138 doi:10.1073/pnas.1014542108
- ↑ Banci L, Bertini I, Calderone V, Cefaro C, Ciofi-Baffoni S, Gallo A, Tokatlidis K. An electron-transfer path through an extended disulfide relay system: the case of the redox protein ALR. J Am Chem Soc. 2012 Jan 25;134(3):1442-5. Epub 2012 Jan 6. PMID:22224850 doi:10.1021/ja209881f
- ↑ Daithankar VN, Farrell SR, Thorpe C. Augmenter of liver regeneration: substrate specificity of a flavin-dependent oxidoreductase from the mitochondrial intermembrane space. Biochemistry. 2009 Jun 9;48(22):4828-37. doi: 10.1021/bi900347v. PMID:19397338 doi:http://dx.doi.org/10.1021/bi900347v
- ↑ Sztolsztener ME, Brewinska A, Guiard B, Chacinska A. Disulfide bond formation: sulfhydryl oxidase ALR controls mitochondrial biogenesis of human MIA40. Traffic. 2013 Mar;14(3):309-20. doi: 10.1111/tra.12030. Epub 2012 Dec 16. PMID:23186364 doi:http://dx.doi.org/10.1111/tra.12030
- ↑ Daithankar VN, Schaefer SA, Dong M, Bahnson BJ, Thorpe C. Structure of the human sulfhydryl oxidase augmenter of liver regeneration and characterization of a human mutation causing an autosomal recessive myopathy. Biochemistry. 2010 Jul 1. PMID:20593814 doi:10.1021/bi100912m
- ↑ Banci L, Bertini I, Calderone V, Cefaro C, Ciofi-Baffoni S, Gallo A, Kallergi E, Lionaki E, Pozidis C, Tokatlidis K. Molecular recognition and substrate mimicry drive the electron-transfer process between MIA40 and ALR. Proc Natl Acad Sci U S A. 2011 Mar 22;108(12):4811-6. Epub 2011 Mar 7. PMID:21383138 doi:10.1073/pnas.1014542108
- ↑ Banci L, Bertini I, Calderone V, Cefaro C, Ciofi-Baffoni S, Gallo A, Tokatlidis K. An electron-transfer path through an extended disulfide relay system: the case of the redox protein ALR. J Am Chem Soc. 2012 Jan 25;134(3):1442-5. Epub 2012 Jan 6. PMID:22224850 doi:10.1021/ja209881f
|