3uvf
From Proteopedia
(Difference between revisions)
Line 3: | Line 3: | ||
<StructureSection load='3uvf' size='340' side='right'caption='[[3uvf]], [[Resolution|resolution]] 3.00Å' scene=''> | <StructureSection load='3uvf' size='340' side='right'caption='[[3uvf]], [[Resolution|resolution]] 3.00Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
- | <table><tr><td colspan='2'>[[3uvf]] is a 6 chain structure with sequence from [https://en.wikipedia.org/wiki/ | + | <table><tr><td colspan='2'>[[3uvf]] is a 6 chain structure with sequence from [https://en.wikipedia.org/wiki/Trichoderma_reesei Trichoderma reesei]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3UVF OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3UVF FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CA:CALCIUM+ION'>CA</scene>, <scene name='pdbligand=NA:SODIUM+ION'>NA</scene>, <scene name='pdbligand=PEG:DI(HYDROXYETHYL)ETHER'>PEG</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 3Å</td></tr> |
- | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CA:CALCIUM+ION'>CA</scene>, <scene name='pdbligand=NA:SODIUM+ION'>NA</scene>, <scene name='pdbligand=PEG:DI(HYDROXYETHYL)ETHER'>PEG</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr> | |
- | + | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3uvf FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3uvf OCA], [https://pdbe.org/3uvf PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3uvf RCSB], [https://www.ebi.ac.uk/pdbsum/3uvf PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3uvf ProSAT]</span></td></tr> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3uvf FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3uvf OCA], [https://pdbe.org/3uvf PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3uvf RCSB], [https://www.ebi.ac.uk/pdbsum/3uvf PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3uvf ProSAT]</span></td></tr> | ||
</table> | </table> | ||
- | <div style="background-color:#fffaf0;"> | ||
- | == Publication Abstract from PubMed == | ||
- | LAGLIDADG homing endonucleases (LHEs) are a family of highly specific DNA endonucleases capable of recognizing target sequences approximately 20 bp in length, thus drawing intense interest for their potential academic, biotechnological and clinical applications. Methods for rational design of LHEs to cleave desired target sites are presently limited by a small number of high-quality native LHEs to serve as scaffolds for protein engineering-many are unsatisfactory for gene targeting applications. One strategy to address such limitations is to identify close homologs of existing LHEs possessing superior biophysical or catalytic properties. To test this concept, we searched public sequence databases to identify putative LHE open reading frames homologous to the LHE I-AniI and used a DNA binding and cleavage assay using yeast surface display to rapidly survey a subset of the predicted proteins. These proteins exhibited a range of capacities for surface expression and also displayed locally altered binding and cleavage specificities with a range of in vivo cleavage activities. Of these enzymes, I-HjeMI demonstrated the greatest activity in vivo and was readily crystallizable, allowing a comparative structural analysis. Taken together, our results suggest that even highly homologous LHEs offer a readily accessible resource of related scaffolds that display diverse biochemical properties for biotechnological applications. | ||
- | |||
- | Expanding LAGLIDADG endonuclease scaffold diversity by rapidly surveying evolutionary sequence space.,Jacoby K, Metzger M, Shen BW, Certo MT, Jarjour J, Stoddard BL, Scharenberg AM Nucleic Acids Res. 2012 Feb 14. PMID:22334611<ref>PMID:22334611</ref> | ||
- | |||
- | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
- | </div> | ||
- | <div class="pdbe-citations 3uvf" style="background-color:#fffaf0;"></div> | ||
==See Also== | ==See Also== | ||
*[[Endonuclease 3D structures|Endonuclease 3D structures]] | *[[Endonuclease 3D structures|Endonuclease 3D structures]] | ||
- | == References == | ||
- | <references/> | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> | ||
- | [[Category: Atcc 13631]] | ||
[[Category: Large Structures]] | [[Category: Large Structures]] | ||
- | [[Category: Jacoby | + | [[Category: Trichoderma reesei]] |
- | [[Category: Jarjour | + | [[Category: Jacoby K]] |
- | [[Category: Metzger | + | [[Category: Jarjour J]] |
- | [[Category: Scharenberg | + | [[Category: Metzger M]] |
- | [[Category: Shen | + | [[Category: Scharenberg A]] |
- | [[Category: Stoddard | + | [[Category: Shen B]] |
- | + | [[Category: Stoddard B]] | |
- | + | ||
- | + | ||
- | + |
Current revision
Expanding LAGALIDADG endonuclease scaffold diversity by rapidly surveying evolutionary sequence space
|