4fm1
From Proteopedia
(Difference between revisions)
Line 4: | Line 4: | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[4fm1]] is a 3 chain structure with sequence from [https://en.wikipedia.org/wiki/Pyrococcus_abyssi_GE5 Pyrococcus abyssi GE5] and [https://en.wikipedia.org/wiki/Synthetic_construct Synthetic construct]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4FM1 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4FM1 FirstGlance]. <br> | <table><tr><td colspan='2'>[[4fm1]] is a 3 chain structure with sequence from [https://en.wikipedia.org/wiki/Pyrococcus_abyssi_GE5 Pyrococcus abyssi GE5] and [https://en.wikipedia.org/wiki/Synthetic_construct Synthetic construct]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4FM1 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4FM1 FirstGlance]. <br> | ||
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=MES:2-(N-MORPHOLINO)-ETHANESULFONIC+ACID'>MES</scene>, <scene name='pdbligand=MN:MANGANESE+(II)+ION'>MN</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 3Å</td></tr> |
+ | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=MES:2-(N-MORPHOLINO)-ETHANESULFONIC+ACID'>MES</scene>, <scene name='pdbligand=MN:MANGANESE+(II)+ION'>MN</scene></td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4fm1 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4fm1 OCA], [https://pdbe.org/4fm1 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4fm1 RCSB], [https://www.ebi.ac.uk/pdbsum/4fm1 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4fm1 ProSAT]</span></td></tr> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4fm1 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4fm1 OCA], [https://pdbe.org/4fm1 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4fm1 RCSB], [https://www.ebi.ac.uk/pdbsum/4fm1 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4fm1 ProSAT]</span></td></tr> | ||
</table> | </table> | ||
== Function == | == Function == | ||
[https://www.uniprot.org/uniprot/DPOL_PYRAB DPOL_PYRAB] | [https://www.uniprot.org/uniprot/DPOL_PYRAB DPOL_PYRAB] | ||
- | <div style="background-color:#fffaf0;"> | ||
- | == Publication Abstract from PubMed == | ||
- | Euryarchaeal polymerase B can recognize deaminated bases on the template strand, effectively stalling the replication fork 4nt downstream the modified base. Using Pyrococcus abyssi DNA B family polymerase (PabPolB), we investigated the discrimination between deaminated and natural nucleotide(s) by primer extension assays, electrophoretic mobility shift assays, and X-ray crystallography. Structures of complexes between the protein and DNA duplexes with either a dU or a dH in position +4 were solved at 2.3A and 2.9A resolution, respectively. The PabPolB is found in the editing mode. A new metal binding site has been uncovered below the base-checking cavity where the +4 base is flipped out; it is fully hydrated in an octahedral fashion and helps guide the strongly kinked template strand. Four other crystal structures with each of the canonical bases were also solved in the editing mode, and the presence of three nucleotides in the exonuclease site caused a shift in the coordination state of its metal A from octahedral to tetrahedral. Surprisingly, we find that all canonical bases also enter the base-checking pocket with very small differences in the binding geometry and in the calculated binding free energy compared to deaminated ones. To explain how this can lead to stalling of the replication fork, the full catalytic pathway and its branches must be taken into account, during which the base is checked several times. Our results strongly suggest a switch from elongation to editing modes right after nucleotide insertion when the modified base is at position +5. | ||
- | + | ==See Also== | |
- | + | *[[DNA polymerase 3D structures|DNA polymerase 3D structures]] | |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> |
Revision as of 15:28, 14 March 2024
Pyrococcus abyssi B family DNA polymerase bound to a dsDNA, in edition mode
|