8sta
From Proteopedia
(Difference between revisions)
Line 9: | Line 9: | ||
== Function == | == Function == | ||
[https://www.uniprot.org/uniprot/ICMF_CUPMC ICMF_CUPMC] Catalyzes the reversible interconversion of isobutyryl-CoA and n-butyryl-CoA, and to a much lesser extent, of pivalyl-CoA and isovaleryl-CoA, using radical chemistry (PubMed:22167181). Also exhibits GTPase activity, associated with its G-protein domain (MeaI) that functions as a chaperone that assists cofactor delivery and proper holo-enzyme assembly (PubMed:22167181, PubMed:25675500). The G-domain of IcmF has also a role in its cofactor repair (PubMed:28130442). Does not display ATPase activity.<ref>PMID:22167181</ref> <ref>PMID:25675500</ref> <ref>PMID:28130442</ref> | [https://www.uniprot.org/uniprot/ICMF_CUPMC ICMF_CUPMC] Catalyzes the reversible interconversion of isobutyryl-CoA and n-butyryl-CoA, and to a much lesser extent, of pivalyl-CoA and isovaleryl-CoA, using radical chemistry (PubMed:22167181). Also exhibits GTPase activity, associated with its G-protein domain (MeaI) that functions as a chaperone that assists cofactor delivery and proper holo-enzyme assembly (PubMed:22167181, PubMed:25675500). The G-domain of IcmF has also a role in its cofactor repair (PubMed:28130442). Does not display ATPase activity.<ref>PMID:22167181</ref> <ref>PMID:25675500</ref> <ref>PMID:28130442</ref> | ||
- | <div style="background-color:#fffaf0;"> | ||
- | == Publication Abstract from PubMed == | ||
- | G-protein metallochaperones are essential for the proper maturation of numerous metalloenzymes. The G-protein chaperone MMAA in humans (MeaB in bacteria) uses GTP hydrolysis to facilitate the delivery of adenosylcobalamin (AdoCbl) to AdoCbl-dependent methylmalonyl-CoA mutase, an essential metabolic enzyme. This G-protein chaperone also facilitates the removal of damaged cobalamin (Cbl) for repair. Although most chaperones are standalone proteins, IcmF (isobutyryl-CoA mutase fused) has a G-protein domain covalently attached to its target mutase. We previously showed that dimeric MeaB undergoes a 180 degrees rotation to reach a state capable of GTP hydrolysis (an active G-protein state), in which so-called switch III residues of one protomer contact the G-nucleotide of the other protomer. However, it was unclear whether other G-protein chaperones also adopted this conformation. Here we show that the G-protein domain in a fused system forms a similar active conformation, requiring IcmF oligomerization. IcmF oligomerizes both upon Cbl damage and in the presence of the nonhydrolyzable GTP analog, guanosine-5'-[(beta,gamma)-methyleno]triphosphate, forming supramolecular complexes observable by mass photometry and electron microscopy. Cryogenic electron microscopy (cryo-EM) structural analysis reveals that the second protomer of the G-protein intermolecular dimer props open the mutase active site using residues of switch III as a wedge, allowing for AdoCbl insertion or damaged Cbl removal. With the series of structural snapshots now available, we now describe here the molecular basis of G-protein assisted adenosylcobalamin-dependent mutase maturation, explaining how GTP binding prepares a mutase for cofactor delivery and how GTP hydrolysis allows the mutase to capture the cofactor. | ||
- | |||
- | Structural insight into G-protein chaperone-mediated maturation of a bacterial adenosylcobalamin-dependent mutase.,Vaccaro FA, Faber DA, Andree GA, Born DA, Kang G, Fonseca DR, Jost M, Drennan CL J Biol Chem. 2023 Jul 28:105109. doi: 10.1016/j.jbc.2023.105109. PMID:37517695<ref>PMID:37517695</ref> | ||
- | |||
- | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
- | </div> | ||
- | <div class="pdbe-citations 8sta" style="background-color:#fffaf0;"></div> | ||
== References == | == References == | ||
<references/> | <references/> |
Current revision
Isobutyryl-CoA mutase fused in the presence of GMPPCP
|