5gom

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Current revision (09:13, 20 March 2024) (edit) (undo)
 
Line 10: Line 10:
== Function ==
== Function ==
[https://www.uniprot.org/uniprot/MFN1_HUMAN MFN1_HUMAN] Essential transmembrane GTPase, which mediates mitochondrial fusion. Fusion of mitochondria occurs in many cell types and constitutes an important step in mitochondria morphology, which is balanced between fusion and fission. MFN1 acts independently of the cytoskeleton. Overexpression induces the formation of mitochondrial networks.<ref>PMID:11181170</ref> <ref>PMID:12475957</ref> <ref>PMID:12759376</ref> <ref>PMID:23921378</ref>
[https://www.uniprot.org/uniprot/MFN1_HUMAN MFN1_HUMAN] Essential transmembrane GTPase, which mediates mitochondrial fusion. Fusion of mitochondria occurs in many cell types and constitutes an important step in mitochondria morphology, which is balanced between fusion and fission. MFN1 acts independently of the cytoskeleton. Overexpression induces the formation of mitochondrial networks.<ref>PMID:11181170</ref> <ref>PMID:12475957</ref> <ref>PMID:12759376</ref> <ref>PMID:23921378</ref>
-
<div style="background-color:#fffaf0;">
 
-
== Publication Abstract from PubMed ==
 
-
Mitochondria are double-membraned organelles with variable shapes influenced by metabolic conditions, developmental stage, and environmental stimuli. Their dynamic morphology is a result of regulated and balanced fusion and fission processes. Fusion is crucial for the health and physiological functions of mitochondria, including complementation of damaged mitochondrial DNAs and the maintenance of membrane potential. Mitofusins are dynamin-related GTPases that are essential for mitochondrial fusion. They are embedded in the mitochondrial outer membrane and thought to fuse adjacent mitochondria via combined oligomerization and GTP hydrolysis. However, the molecular mechanisms of this process remain unknown. Here we present crystal structures of engineered human MFN1 containing the GTPase domain and a helical domain during different stages of GTP hydrolysis. The helical domain is composed of elements from widely dispersed sequence regions of MFN1 and resembles the 'neck' of the bacterial dynamin-like protein. The structures reveal unique features of its catalytic machinery and explain how GTP binding induces conformational changes to promote GTPase domain dimerization in the transition state. Disruption of GTPase domain dimerization abolishes the fusogenic activity of MFN1. Moreover, a conserved aspartate residue trigger was found to affect mitochondrial elongation in MFN1, probably through a GTP-loading-dependent domain rearrangement. Thus, we propose a mechanistic model for MFN1-mediated mitochondrial tethering, and our results shed light on the molecular basis of mitochondrial fusion and mitofusin-related human neuromuscular disorders.
 
- 
-
MFN1 structures reveal nucleotide-triggered dimerization critical for mitochondrial fusion.,Cao YL, Meng S, Chen Y, Feng JX, Gu DD, Yu B, Li YJ, Yang JY, Liao S, Chan DC, Gao S Nature. 2017 Feb 16;542(7641):372-376. doi: 10.1038/nature21077. Epub 2017 Jan, 23. PMID:28114303<ref>PMID:28114303</ref>
 
- 
-
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
 
-
</div>
 
-
<div class="pdbe-citations 5gom" style="background-color:#fffaf0;"></div>
 
== References ==
== References ==
<references/>
<references/>

Current revision

Truncated mitofusin-1, transition-like state

PDB ID 5gom

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools