|
|
| Line 1: |
Line 1: |
| | | | |
| | ==Pim1 Kinase in complex with a benzofuranone inhibitor== | | ==Pim1 Kinase in complex with a benzofuranone inhibitor== |
| - | <StructureSection load='5vua' size='340' side='right' caption='[[5vua]], [[Resolution|resolution]] 2.20Å' scene=''> | + | <StructureSection load='5vua' size='340' side='right'caption='[[5vua]], [[Resolution|resolution]] 2.20Å' scene=''> |
| | == Structural highlights == | | == Structural highlights == |
| - | <table><tr><td colspan='2'>[[5vua]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Human Human]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5VUA OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5VUA FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[5vua]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5VUA OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=5VUA FirstGlance]. <br> |
| - | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=8GX:(2Z)-6-methoxy-7-(piperazin-1-ylmethyl)-2-(1H-pyrrolo[2,3-c]pyridin-3-ylmethylidene)-1-benzofuran-3-one'>8GX</scene>, <scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=PO4:PHOSPHATE+ION'>PO4</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.2Å</td></tr> |
| - | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">PIM1 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN])</td></tr>
| + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=8GX:(2Z)-6-methoxy-7-(piperazin-1-ylmethyl)-2-(1H-pyrrolo[2,3-c]pyridin-3-ylmethylidene)-1-benzofuran-3-one'>8GX</scene>, <scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=PO4:PHOSPHATE+ION'>PO4</scene></td></tr> |
| - | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Non-specific_serine/threonine_protein_kinase Non-specific serine/threonine protein kinase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.7.11.1 2.7.11.1] </span></td></tr>
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=5vua FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5vua OCA], [https://pdbe.org/5vua PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=5vua RCSB], [https://www.ebi.ac.uk/pdbsum/5vua PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=5vua ProSAT]</span></td></tr> |
| - | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5vua FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5vua OCA], [http://pdbe.org/5vua PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=5vua RCSB], [http://www.ebi.ac.uk/pdbsum/5vua PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=5vua ProSAT]</span></td></tr> | + | |
| | </table> | | </table> |
| | == Function == | | == Function == |
| - | [[http://www.uniprot.org/uniprot/PIM1_HUMAN PIM1_HUMAN]] Proto-oncogene with serine/threonine kinase activity involved in cell survival and cell proliferation and thus providing a selective advantage in tumorigenesis. Exerts its oncogenic activity through: the regulation of MYC transcriptional activity, the regulation of cell cycle progression and by phosphorylation and inhibition of proapoptotic proteins (BAD, MAP3K5, FOXO3). Phosphorylation of MYC leads to an increase of MYC protein stability and thereby an increase of transcriptional activity. The stabilization of MYC exerted by PIM1 might explain partly the strong synergism between these two oncogenes in tumorigenesis. Mediates survival signaling through phosphorylation of BAD, which induces release of the anti-apoptotic protein Bcl-X(L)/BCL2L1. Phosphorylation of MAP3K5, an other proapoptotic protein, by PIM1, significantly decreases MAP3K5 kinase activity and inhibits MAP3K5-mediated phosphorylation of JNK and JNK/p38MAPK subsequently reducing caspase-3 activation and cell apoptosis. Stimulates cell cycle progression at the G1-S and G2-M transitions by phosphorylation of CDC25A and CDC25C. Phosphorylation of CDKN1A, a regulator of cell cycle progression at G1, results in the relocation of CDKN1A to the cytoplasm and enhanced CDKN1A protein stability. Promote cell cycle progression and tumorigenesis by down-regulating expression of a regulator of cell cycle progression, CDKN1B, at both transcriptional and post-translational levels. Phosphorylation of CDKN1B,induces 14-3-3-proteins binding, nuclear export and proteasome-dependent degradation. May affect the structure or silencing of chromatin by phosphorylating HP1 gamma/CBX3. Acts also as a regulator of homing and migration of bone marrow cells involving functional interaction with the CXCL12-CXCR4 signaling axis.<ref>PMID:1825810</ref> <ref>PMID:10664448</ref> <ref>PMID:12431783</ref> <ref>PMID:15528381</ref> <ref>PMID:16356754</ref> <ref>PMID:18593906</ref> <ref>PMID:19749799</ref> | + | [https://www.uniprot.org/uniprot/PIM1_HUMAN PIM1_HUMAN] Proto-oncogene with serine/threonine kinase activity involved in cell survival and cell proliferation and thus providing a selective advantage in tumorigenesis. Exerts its oncogenic activity through: the regulation of MYC transcriptional activity, the regulation of cell cycle progression and by phosphorylation and inhibition of proapoptotic proteins (BAD, MAP3K5, FOXO3). Phosphorylation of MYC leads to an increase of MYC protein stability and thereby an increase of transcriptional activity. The stabilization of MYC exerted by PIM1 might explain partly the strong synergism between these two oncogenes in tumorigenesis. Mediates survival signaling through phosphorylation of BAD, which induces release of the anti-apoptotic protein Bcl-X(L)/BCL2L1. Phosphorylation of MAP3K5, an other proapoptotic protein, by PIM1, significantly decreases MAP3K5 kinase activity and inhibits MAP3K5-mediated phosphorylation of JNK and JNK/p38MAPK subsequently reducing caspase-3 activation and cell apoptosis. Stimulates cell cycle progression at the G1-S and G2-M transitions by phosphorylation of CDC25A and CDC25C. Phosphorylation of CDKN1A, a regulator of cell cycle progression at G1, results in the relocation of CDKN1A to the cytoplasm and enhanced CDKN1A protein stability. Promote cell cycle progression and tumorigenesis by down-regulating expression of a regulator of cell cycle progression, CDKN1B, at both transcriptional and post-translational levels. Phosphorylation of CDKN1B,induces 14-3-3-proteins binding, nuclear export and proteasome-dependent degradation. May affect the structure or silencing of chromatin by phosphorylating HP1 gamma/CBX3. Acts also as a regulator of homing and migration of bone marrow cells involving functional interaction with the CXCL12-CXCR4 signaling axis.<ref>PMID:1825810</ref> <ref>PMID:10664448</ref> <ref>PMID:12431783</ref> <ref>PMID:15528381</ref> <ref>PMID:16356754</ref> <ref>PMID:18593906</ref> <ref>PMID:19749799</ref> |
| - | <div style="background-color:#fffaf0;">
| + | |
| - | == Publication Abstract from PubMed ==
| + | |
| - | Significant activity changes due to small structural changes (i.e., activity cliffs) of serine/threonine kinase Pim1 inhibitors were studied theoretically using the fragment molecular orbital method with molecular mechanics Poisson-Boltzmann surface area (FMO+MM-PBSA) approach. This methodology enables quantum-chemical calculations for large biomolecules with solvation. In the course of drug discovery targeting Pim1, six benzofuranone-class inhibitors were found to differ only in the position of the indole-ring nitrogen atom. By comparing the various qualities of complex structures based on X-ray, classical molecular mechanics (MM)-optimized, and quantum/molecular mechanics (QM/MM)-optimized structures, we found that the QM/MM-optimized structures provided the best correlation (R(2) = 0.85) between pIC50 and the calculated FMO+MM-PBSA binding energy. Combining the classical solvation energy with the QM binding energy was important to increase the correlation. In addition, decomposition of the interaction energy into various physicochemical components by pair interaction energy decomposition analysis suggested that CH-pi and electrostatic interactions mainly caused the activity differences.
| + | |
| | | | |
| - | Theoretical Analysis of Activity Cliffs among Benzofuranone-Class Pim1 Inhibitors Using the Fragment Molecular Orbital Method with Molecular Mechanics Poisson-Boltzmann Surface Area (FMO+MM-PBSA) Approach.,Watanabe C, Watanabe H, Fukuzawa K, Parker LJ, Okiyama Y, Yuki H, Yokoyama S, Nakano H, Tanaka S, Honma T J Chem Inf Model. 2017 Dec 1. doi: 10.1021/acs.jcim.7b00110. PMID:29111719<ref>PMID:29111719</ref>
| + | ==See Also== |
| - | | + | *[[Serine/threonine protein kinase 3D structures|Serine/threonine protein kinase 3D structures]] |
| - | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br>
| + | *[[3D structures of pim-1|3D structures of pim-1]] |
| - | </div>
| + | |
| - | <div class="pdbe-citations 5vua" style="background-color:#fffaf0;"></div>
| + | |
| | == References == | | == References == |
| | <references/> | | <references/> |
| | __TOC__ | | __TOC__ |
| | </StructureSection> | | </StructureSection> |
| - | [[Category: Human]] | + | [[Category: Homo sapiens]] |
| - | [[Category: Non-specific serine/threonine protein kinase]] | + | [[Category: Large Structures]] |
| - | [[Category: Parker, L J]] | + | [[Category: Parker LJ]] |
| - | [[Category: Kinase inhibitor]]
| + | |
| - | [[Category: Pim1 kinase]]
| + | |
| - | [[Category: Transferase]]
| + | |
| Structural highlights
Function
PIM1_HUMAN Proto-oncogene with serine/threonine kinase activity involved in cell survival and cell proliferation and thus providing a selective advantage in tumorigenesis. Exerts its oncogenic activity through: the regulation of MYC transcriptional activity, the regulation of cell cycle progression and by phosphorylation and inhibition of proapoptotic proteins (BAD, MAP3K5, FOXO3). Phosphorylation of MYC leads to an increase of MYC protein stability and thereby an increase of transcriptional activity. The stabilization of MYC exerted by PIM1 might explain partly the strong synergism between these two oncogenes in tumorigenesis. Mediates survival signaling through phosphorylation of BAD, which induces release of the anti-apoptotic protein Bcl-X(L)/BCL2L1. Phosphorylation of MAP3K5, an other proapoptotic protein, by PIM1, significantly decreases MAP3K5 kinase activity and inhibits MAP3K5-mediated phosphorylation of JNK and JNK/p38MAPK subsequently reducing caspase-3 activation and cell apoptosis. Stimulates cell cycle progression at the G1-S and G2-M transitions by phosphorylation of CDC25A and CDC25C. Phosphorylation of CDKN1A, a regulator of cell cycle progression at G1, results in the relocation of CDKN1A to the cytoplasm and enhanced CDKN1A protein stability. Promote cell cycle progression and tumorigenesis by down-regulating expression of a regulator of cell cycle progression, CDKN1B, at both transcriptional and post-translational levels. Phosphorylation of CDKN1B,induces 14-3-3-proteins binding, nuclear export and proteasome-dependent degradation. May affect the structure or silencing of chromatin by phosphorylating HP1 gamma/CBX3. Acts also as a regulator of homing and migration of bone marrow cells involving functional interaction with the CXCL12-CXCR4 signaling axis.[1] [2] [3] [4] [5] [6] [7]
See Also
References
- ↑ Saris CJ, Domen J, Berns A. The pim-1 oncogene encodes two related protein-serine/threonine kinases by alternative initiation at AUG and CUG. EMBO J. 1991 Mar;10(3):655-64. PMID:1825810
- ↑ Koike N, Maita H, Taira T, Ariga H, Iguchi-Ariga SM. Identification of heterochromatin protein 1 (HP1) as a phosphorylation target by Pim-1 kinase and the effect of phosphorylation on the transcriptional repression function of HP1(1). FEBS Lett. 2000 Feb 4;467(1):17-21. PMID:10664448
- ↑ Wang Z, Bhattacharya N, Mixter PF, Wei W, Sedivy J, Magnuson NS. Phosphorylation of the cell cycle inhibitor p21Cip1/WAF1 by Pim-1 kinase. Biochim Biophys Acta. 2002 Dec 16;1593(1):45-55. PMID:12431783
- ↑ Stout BA, Bates ME, Liu LY, Farrington NN, Bertics PJ. IL-5 and granulocyte-macrophage colony-stimulating factor activate STAT3 and STAT5 and promote Pim-1 and cyclin D3 protein expression in human eosinophils. J Immunol. 2004 Nov 15;173(10):6409-17. PMID:15528381
- ↑ Bachmann M, Kosan C, Xing PX, Montenarh M, Hoffmann I, Moroy T. The oncogenic serine/threonine kinase Pim-1 directly phosphorylates and activates the G2/M specific phosphatase Cdc25C. Int J Biochem Cell Biol. 2006 Mar;38(3):430-43. Epub 2005 Nov 8. PMID:16356754 doi:10.1016/j.biocel.2005.10.010
- ↑ Morishita D, Katayama R, Sekimizu K, Tsuruo T, Fujita N. Pim kinases promote cell cycle progression by phosphorylating and down-regulating p27Kip1 at the transcriptional and posttranscriptional levels. Cancer Res. 2008 Jul 1;68(13):5076-85. doi: 10.1158/0008-5472.CAN-08-0634. PMID:18593906 doi:10.1158/0008-5472.CAN-08-0634
- ↑ Gu JJ, Wang Z, Reeves R, Magnuson NS. PIM1 phosphorylates and negatively regulates ASK1-mediated apoptosis. Oncogene. 2009 Dec 3;28(48):4261-71. doi: 10.1038/onc.2009.276. Epub 2009 Sep 14. PMID:19749799 doi:10.1038/onc.2009.276
|