6oce

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Current revision (09:23, 20 March 2024) (edit) (undo)
 
Line 3: Line 3:
<SX load='6oce' size='340' side='right' viewer='molstar' caption='[[6oce]], [[Resolution|resolution]] 4.90&Aring;' scene=''>
<SX load='6oce' size='340' side='right' viewer='molstar' caption='[[6oce]], [[Resolution|resolution]] 4.90&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
-
<table><tr><td colspan='2'>[[6oce]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Japanese_rice Japanese rice]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6OCE OCA]. For a <b>guided tour on the structure components</b> use [http://proteopedia.org/fgij/fg.htm?mol=6OCE FirstGlance]. <br>
+
<table><tr><td colspan='2'>[[6oce]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Oryza_sativa_Japonica_Group Oryza sativa Japonica Group]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6OCE OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=6OCE FirstGlance]. <br>
-
</td></tr><tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">Os05g0594700, OSJNBa0030I14.5, OSNPB_050594700 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=39947 Japanese rice])</td></tr>
+
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Electron Microscopy, [[Resolution|Resolution]] 4.9&#8491;</td></tr>
-
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://proteopedia.org/fgij/fg.htm?mol=6oce FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6oce OCA], [http://pdbe.org/6oce PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6oce RCSB], [http://www.ebi.ac.uk/pdbsum/6oce PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6oce ProSAT]</span></td></tr>
+
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=6oce FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6oce OCA], [https://pdbe.org/6oce PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=6oce RCSB], [https://www.ebi.ac.uk/pdbsum/6oce PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=6oce ProSAT]</span></td></tr>
</table>
</table>
-
<div style="background-color:#fffaf0;">
+
== Function ==
-
== Publication Abstract from PubMed ==
+
[https://www.uniprot.org/uniprot/Q5TKG1_ORYSJ Q5TKG1_ORYSJ]
-
Sensing and responding to environmental water deficiency and osmotic stresses are essential for the growth, development, and survival of plants. Recently, an osmolality-sensing ion channel called OSCA1 was discovered that functions in sensing hyperosmolality in Arabidopsis Here, we report the cryo-electron microscopy (cryo-EM) structure and function of an OSCA1 homolog from rice (Oryza sativa; OsOSCA1.2), leading to a model of how it could mediate hyperosmolality sensing and transport pathway gating. The structure reveals a dimer; the molecular architecture of each subunit consists of 11 transmembrane (TM) helices and a cytosolic soluble domain that has homology to RNA recognition proteins. The TM domain is structurally related to the TMEM16 family of calcium-dependent ion channels and lipid scramblases. The cytosolic soluble domain possesses a distinct structural feature in the form of extended intracellular helical arms that are parallel to the plasma membrane. These helical arms are well positioned to potentially sense lateral tension on the inner leaflet of the lipid bilayer caused by changes in turgor pressure. Computational dynamic analysis suggests how this domain couples to the TM portion of the molecule to open a transport pathway. Hydrogen/deuterium exchange mass spectrometry (HDXMS) experimentally confirms the conformational dynamics of these coupled domains. These studies provide a framework to understand the structural basis of proposed hyperosmolality sensing in a staple crop plant, extend our knowledge of the anoctamin superfamily important for plants and fungi, and provide a structural mechanism for potentially translating membrane stress to transport regulation.
+
-
 
+
-
Cryo-EM structure of OSCA1.2 from Oryza sativa elucidates the mechanical basis of potential membrane hyperosmolality gating.,Maity K, Heumann JM, McGrath AP, Kopcho NJ, Hsu PK, Lee CW, Mapes JH, Garza D, Krishnan S, Morgan GP, Hendargo KJ, Klose T, Rees SD, Medrano-Soto A, Saier MH Jr, Pineros M, Komives EA, Schroeder JI, Chang G, Stowell MHB Proc Natl Acad Sci U S A. 2019 Jun 21. pii: 1900774116. doi:, 10.1073/pnas.1900774116. PMID:31227607<ref>PMID:31227607</ref>
+
-
 
+
-
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
+
-
</div>
+
-
<div class="pdbe-citations 6oce" style="background-color:#fffaf0;"></div>
+
-
== References ==
+
-
<references/>
+
__TOC__
__TOC__
</SX>
</SX>
-
[[Category: Japanese rice]]
 
[[Category: Large Structures]]
[[Category: Large Structures]]
-
[[Category: Chang, G]]
+
[[Category: Oryza sativa Japonica Group]]
-
[[Category: Heumann, J M]]
+
[[Category: Chang G]]
-
[[Category: Maity, K]]
+
[[Category: Heumann JM]]
-
[[Category: McGrath, A P]]
+
[[Category: Maity K]]
-
[[Category: Stowell, M H]]
+
[[Category: McGrath AP]]
-
[[Category: Ion channel osmolality gated]]
+
[[Category: Stowell MH]]
-
[[Category: Transport protein]]
+

Current revision

Structure of the rice hyperosmolality-gated ion channel OSCA1.2

6oce, resolution 4.90Å

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools