|
|
Line 3: |
Line 3: |
| <SX load='6oma' size='340' side='right' viewer='molstar' caption='[[6oma]], [[Resolution|resolution]] 7.20Å' scene=''> | | <SX load='6oma' size='340' side='right' viewer='molstar' caption='[[6oma]], [[Resolution|resolution]] 7.20Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[6oma]] is a 13 chain structure with sequence from [http://en.wikipedia.org/wiki/Escherichia_phage_t5 Escherichia phage t5]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6OMA OCA]. For a <b>guided tour on the structure components</b> use [http://proteopedia.org/fgij/fg.htm?mol=6OMA FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[6oma]] is a 13 chain structure with sequence from [https://en.wikipedia.org/wiki/Escherichia_virus_T5 Escherichia virus T5]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6OMA OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=6OMA FirstGlance]. <br> |
- | </td></tr><tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://proteopedia.org/fgij/fg.htm?mol=6oma FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6oma OCA], [http://pdbe.org/6oma PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6oma RCSB], [http://www.ebi.ac.uk/pdbsum/6oma PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6oma ProSAT]</span></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Electron Microscopy, [[Resolution|Resolution]] 7.2Å</td></tr> |
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=6oma FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6oma OCA], [https://pdbe.org/6oma PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=6oma RCSB], [https://www.ebi.ac.uk/pdbsum/6oma PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=6oma ProSAT]</span></td></tr> |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[http://www.uniprot.org/uniprot/CAPSD_BPT5 CAPSD_BPT5]] Major capsid protein that self-associates to form 120 hexamers and 11 pentamers, building the T=13 icosahedral capsid which about 860 Angstroms in diameter. Responsible for its self-assembly into a procapsid. The phage does not need to encode a separate scaffolfing protein because its capsid protein contains the delta domain that carries that function. The capsid gains its final stability through the reorganization of the subunits that takes place upon expansion. DNA encapsidation through the portal triggers capsid expansion and the binding of the decoration protein to the capsid exterior.<ref>PMID:20573812</ref> <ref>PMID:23500494</ref> <ref>PMID:26616586</ref> | + | [https://www.uniprot.org/uniprot/CAPSD_BPT5 CAPSD_BPT5] Major capsid protein that self-associates to form 120 hexamers and 11 pentamers, building the T=13 icosahedral capsid which about 860 Angstroms in diameter. Responsible for its self-assembly into a procapsid. The phage does not need to encode a separate scaffolfing protein because its capsid protein contains the delta domain that carries that function. The capsid gains its final stability through the reorganization of the subunits that takes place upon expansion. DNA encapsidation through the portal triggers capsid expansion and the binding of the decoration protein to the capsid exterior.<ref>PMID:20573812</ref> <ref>PMID:23500494</ref> <ref>PMID:26616586</ref> |
- | <div style="background-color:#fffaf0;">
| + | |
- | == Publication Abstract from PubMed ==
| + | |
- | The large (90-nm) icosahedral capsid of bacteriophage T5 is composed of 775 copies of the major capsid protein (mcp) together with portal, protease, and decoration proteins. Its assembly is a regulated process that involves several intermediates, including a thick-walled round precursor prohead that expands as the viral DNA is packaged to yield a thin-walled and angular mature capsid. We investigated capsid maturation by comparing cryoelectron microscopy (cryo-EM) structures of the prohead, the empty expanded capsid both with and without decoration protein, and the virion capsid at a resolution of 3.8 A for the latter. We detail the molecular structure of the mcp, its complex pattern of interactions, and their evolution during maturation. The bacteriophage T5 mcp is a variant of the canonical HK97-fold with a high level of plasticity that allows for the precise assembly of a giant macromolecule and the adaptability needed to interact with other proteins and the packaged DNA.
| + | |
- | | + | |
- | Capsid expansion of bacteriophage T5 revealed by high resolution cryoelectron microscopy.,Huet A, Duda RL, Boulanger P, Conway JF Proc Natl Acad Sci U S A. 2019 Oct 15;116(42):21037-21046. doi:, 10.1073/pnas.1909645116. Epub 2019 Oct 2. PMID:31578255<ref>PMID:31578255</ref>
| + | |
- | | + | |
- | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br>
| + | |
- | </div>
| + | |
- | <div class="pdbe-citations 6oma" style="background-color:#fffaf0;"></div>
| + | |
| == References == | | == References == |
| <references/> | | <references/> |
| __TOC__ | | __TOC__ |
| </SX> | | </SX> |
- | [[Category: Escherichia phage t5]] | + | [[Category: Escherichia virus T5]] |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Boulanger, P]] | + | [[Category: Boulanger P]] |
- | [[Category: Conway, J F]] | + | [[Category: Conway JF]] |
- | [[Category: Duda, R L]] | + | [[Category: Duda RL]] |
- | [[Category: Huet, A]] | + | [[Category: Huet A]] |
- | [[Category: Capsid]]
| + | |
- | [[Category: Dsdna-phage]]
| + | |
- | [[Category: Hk97-fold]]
| + | |
- | [[Category: Icosahedral]]
| + | |
- | [[Category: Virus]]
| + | |
| Structural highlights
Function
CAPSD_BPT5 Major capsid protein that self-associates to form 120 hexamers and 11 pentamers, building the T=13 icosahedral capsid which about 860 Angstroms in diameter. Responsible for its self-assembly into a procapsid. The phage does not need to encode a separate scaffolfing protein because its capsid protein contains the delta domain that carries that function. The capsid gains its final stability through the reorganization of the subunits that takes place upon expansion. DNA encapsidation through the portal triggers capsid expansion and the binding of the decoration protein to the capsid exterior.[1] [2] [3]
References
- ↑ Huet A, Conway JF, Letellier L, Boulanger P. In vitro assembly of the T=13 procapsid of bacteriophage T5 with its scaffolding domain. J Virol. 2010 Sep;84(18):9350-8. doi: 10.1128/JVI.00942-10. Epub 2010 Jun 23. PMID:20573812 doi:http://dx.doi.org/10.1128/JVI.00942-10
- ↑ Preux O, Durand D, Huet A, Conway JF, Bertin A, Boulogne C, Drouin-Wahbi J, Trevarin D, Perez J, Vachette P, Boulanger P. A two-state cooperative expansion converts the procapsid shell of bacteriophage T5 into a highly stable capsid isomorphous to the final virion head. J Mol Biol. 2013 Jun 12;425(11):1999-2014. doi: 10.1016/j.jmb.2013.03.002. Epub, 2013 Mar 13. PMID:23500494 doi:http://dx.doi.org/10.1016/j.jmb.2013.03.002
- ↑ Huet A, Duda RL, Hendrix RW, Boulanger P, Conway JF. Correct Assembly of the Bacteriophage T5 Procapsid Requires Both the Maturation Protease and the Portal Complex. J Mol Biol. 2016 Jan 16;428(1):165-81. doi: 10.1016/j.jmb.2015.11.019. Epub 2015 , Nov 23. PMID:26616586 doi:http://dx.doi.org/10.1016/j.jmb.2015.11.019
|