|
|
Line 3: |
Line 3: |
| <StructureSection load='6up6' size='340' side='right'caption='[[6up6]], [[Resolution|resolution]] 9.00Å' scene=''> | | <StructureSection load='6up6' size='340' side='right'caption='[[6up6]], [[Resolution|resolution]] 9.00Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[6up6]] is a 44 chain structure with sequence from [http://en.wikipedia.org/wiki/Human Human]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6UP6 OCA]. For a <b>guided tour on the structure components</b> use [http://proteopedia.org/fgij/fg.htm?mol=6UP6 FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[6up6]] is a 44 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6UP6 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=6UP6 FirstGlance]. <br> |
- | </td></tr><tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">SH3GLB1, KIAA0491, CGI-61 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN])</td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Electron Microscopy, [[Resolution|Resolution]] 9Å</td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://proteopedia.org/fgij/fg.htm?mol=6up6 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6up6 OCA], [http://pdbe.org/6up6 PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6up6 RCSB], [http://www.ebi.ac.uk/pdbsum/6up6 PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6up6 ProSAT]</span></td></tr> | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=6up6 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6up6 OCA], [https://pdbe.org/6up6 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=6up6 RCSB], [https://www.ebi.ac.uk/pdbsum/6up6 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=6up6 ProSAT]</span></td></tr> |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[http://www.uniprot.org/uniprot/SHLB1_HUMAN SHLB1_HUMAN]] May be required for normal outer mitochondrial membrane dynamics (PubMed:15452144). Required for coatomer-mediated retrograde transport in certain cells (By similarity). May recruit other proteins to membranes with high curvature. May promote membrane fusion (PubMed:11604418). Involved in activation of caspase-dependent apoptosis by promoting BAX/BAK1 activation (PubMed:16227588). Isoform 1 acts proapoptotic in fibroblasts (By similarity). Involved in caspase-independent apoptosis during nutrition starvation and involved in the regulation of autophagy. Activates lipid kinase activity of PIK3C3 during autophagy probably by associating with the PI3K complex II (PI3KC3-C2) (PubMed:17891140). Associated with PI3KC3-C2 during autophagy may regulate the trafficking of ATG9A from the Golgi complex to the peripheral cytoplasm for the formation of autophagosomes by inducing Golgi membrane tubulation and fragmentation (PubMed:21068542). Involved in regulation of degradative endocytic trafficking and cytokinesis, probably in the context of PI3KC3-C2 (PubMed:20643123). Isoform 2 acts antiapoptotic in neuronal cells; involved in maintenance of mitochondrial morphology and promotes neuronal viability (By similarity).[UniProtKB:Q9JK48]<ref>PMID:11604418</ref> <ref>PMID:15452144</ref> <ref>PMID:17891140</ref> <ref>PMID:20643123</ref> <ref>PMID:21068542</ref> | + | [https://www.uniprot.org/uniprot/SHLB1_HUMAN SHLB1_HUMAN] May be required for normal outer mitochondrial membrane dynamics (PubMed:15452144). Required for coatomer-mediated retrograde transport in certain cells (By similarity). May recruit other proteins to membranes with high curvature. May promote membrane fusion (PubMed:11604418). Involved in activation of caspase-dependent apoptosis by promoting BAX/BAK1 activation (PubMed:16227588). Isoform 1 acts proapoptotic in fibroblasts (By similarity). Involved in caspase-independent apoptosis during nutrition starvation and involved in the regulation of autophagy. Activates lipid kinase activity of PIK3C3 during autophagy probably by associating with the PI3K complex II (PI3KC3-C2) (PubMed:17891140). Associated with PI3KC3-C2 during autophagy may regulate the trafficking of ATG9A from the Golgi complex to the peripheral cytoplasm for the formation of autophagosomes by inducing Golgi membrane tubulation and fragmentation (PubMed:21068542). Involved in regulation of degradative endocytic trafficking and cytokinesis, probably in the context of PI3KC3-C2 (PubMed:20643123). Isoform 2 acts antiapoptotic in neuronal cells; involved in maintenance of mitochondrial morphology and promotes neuronal viability (By similarity).[UniProtKB:Q9JK48]<ref>PMID:11604418</ref> <ref>PMID:15452144</ref> <ref>PMID:17891140</ref> <ref>PMID:20643123</ref> <ref>PMID:21068542</ref> |
- | <div style="background-color:#fffaf0;">
| + | |
- | == Publication Abstract from PubMed ==
| + | |
- | Membrane remodeling is a common theme in a variety of cellular processes. Here, we investigated membrane remodeling N-BAR protein endophilin B1, a critical player in diverse intracellular trafficking events, including mitochondrial and Golgi fission, and apoptosis. We find that endophilin B1 assembles into helical scaffolds on membranes, and that both membrane binding and assembly are driven by interactions between N-terminal helix H0 and the lipid bilayer. Furthermore, we find that endophilin B1 membrane remodeling is auto-inhibited and identify direct SH3 domain-H0 interactions as the underlying mechanism. Our results indicate that lipid composition plays a role in dictating endophilin B1 activity. Taken together, this study provides insight into a poorly understood N-BAR protein family member and highlights molecular mechanisms that may be general for the regulation of membrane remodeling. Our work suggests that interplay between membrane lipids and membrane interacting proteins facilitates spatial and temporal coordination of membrane remodeling.
| + | |
- | | + | |
- | Amphipathic Motifs Regulate N-BAR Protein Endophilin B1 Auto-inhibition and Drive Membrane Remodeling.,Bhatt VS, Ashley R, Sundborger-Lunna A Structure. 2020 Oct 13. pii: S0969-2126(20)30370-1. doi:, 10.1016/j.str.2020.09.012. PMID:33086035<ref>PMID:33086035</ref>
| + | |
- | | + | |
- | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br>
| + | |
- | </div>
| + | |
- | <div class="pdbe-citations 6up6" style="background-color:#fffaf0;"></div>
| + | |
| == References == | | == References == |
| <references/> | | <references/> |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Human]] | + | [[Category: Homo sapiens]] |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Bhatt, V S]] | + | [[Category: Bhatt VS]] |
- | [[Category: Sundborger-Lunna, A C]] | + | [[Category: Sundborger-Lunna AC]] |
- | [[Category: Amphipathic helix]]
| + | |
- | [[Category: Bar protein]]
| + | |
- | [[Category: Cell death]]
| + | |
- | [[Category: Cytosolic protein]]
| + | |
- | [[Category: Membrane binding]]
| + | |
- | [[Category: Membrane trafficking]]
| + | |
- | [[Category: Sh3 domain]]
| + | |
| Structural highlights
Function
SHLB1_HUMAN May be required for normal outer mitochondrial membrane dynamics (PubMed:15452144). Required for coatomer-mediated retrograde transport in certain cells (By similarity). May recruit other proteins to membranes with high curvature. May promote membrane fusion (PubMed:11604418). Involved in activation of caspase-dependent apoptosis by promoting BAX/BAK1 activation (PubMed:16227588). Isoform 1 acts proapoptotic in fibroblasts (By similarity). Involved in caspase-independent apoptosis during nutrition starvation and involved in the regulation of autophagy. Activates lipid kinase activity of PIK3C3 during autophagy probably by associating with the PI3K complex II (PI3KC3-C2) (PubMed:17891140). Associated with PI3KC3-C2 during autophagy may regulate the trafficking of ATG9A from the Golgi complex to the peripheral cytoplasm for the formation of autophagosomes by inducing Golgi membrane tubulation and fragmentation (PubMed:21068542). Involved in regulation of degradative endocytic trafficking and cytokinesis, probably in the context of PI3KC3-C2 (PubMed:20643123). Isoform 2 acts antiapoptotic in neuronal cells; involved in maintenance of mitochondrial morphology and promotes neuronal viability (By similarity).[UniProtKB:Q9JK48][1] [2] [3] [4] [5]
References
- ↑ Farsad K, Ringstad N, Takei K, Floyd SR, Rose K, De Camilli P. Generation of high curvature membranes mediated by direct endophilin bilayer interactions. J Cell Biol. 2001 Oct 15;155(2):193-200. Epub 2001 Oct 15. PMID:11604418 doi:10.1083/jcb.200107075
- ↑ Karbowski M, Jeong SY, Youle RJ. Endophilin B1 is required for the maintenance of mitochondrial morphology. J Cell Biol. 2004 Sep 27;166(7):1027-39. doi: 10.1083/jcb.200407046. PMID:15452144 doi:http://dx.doi.org/10.1083/jcb.200407046
- ↑ Takahashi Y, Coppola D, Matsushita N, Cualing HD, Sun M, Sato Y, Liang C, Jung JU, Cheng JQ, Mule JJ, Pledger WJ, Wang HG. Bif-1 interacts with Beclin 1 through UVRAG and regulates autophagy and tumorigenesis. Nat Cell Biol. 2007 Oct;9(10):1142-51. doi: 10.1038/ncb1634. Epub 2007 Sep 23. PMID:17891140 doi:http://dx.doi.org/10.1038/ncb1634
- ↑ Thoresen SB, Pedersen NM, Liestol K, Stenmark H. A phosphatidylinositol 3-kinase class III sub-complex containing VPS15, VPS34, Beclin 1, UVRAG and BIF-1 regulates cytokinesis and degradative endocytic traffic. Exp Cell Res. 2010 Dec 10;316(20):3368-78. doi: 10.1016/j.yexcr.2010.07.008. Epub, 2010 Jul 17. PMID:20643123 doi:http://dx.doi.org/10.1016/j.yexcr.2010.07.008
- ↑ Takahashi Y, Meyerkord CL, Hori T, Runkle K, Fox TE, Kester M, Loughran TP, Wang HG. Bif-1 regulates Atg9 trafficking by mediating the fission of Golgi membranes during autophagy. Autophagy. 2011 Jan;7(1):61-73. doi: 10.4161/auto.7.1.14015. Epub 2011 Jan 1. PMID:21068542 doi:http://dx.doi.org/10.4161/auto.7.1.14015
|