8pqn

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Current revision (09:33, 20 March 2024) (edit) (undo)
 
Line 10: Line 10:
== Function ==
== Function ==
[https://www.uniprot.org/uniprot/NQO1_HUMAN NQO1_HUMAN] The enzyme apparently serves as a quinone reductase in connection with conjugation reactions of hydroquinons involved in detoxification pathways as well as in biosynthetic processes such as the vitamin K-dependent gamma-carboxylation of glutamate residues in prothrombin synthesis.
[https://www.uniprot.org/uniprot/NQO1_HUMAN NQO1_HUMAN] The enzyme apparently serves as a quinone reductase in connection with conjugation reactions of hydroquinons involved in detoxification pathways as well as in biosynthetic processes such as the vitamin K-dependent gamma-carboxylation of glutamate residues in prothrombin synthesis.
-
<div style="background-color:#fffaf0;">
 
-
== Publication Abstract from PubMed ==
 
-
Degraders hold the promise to efficiently inactivate previously intractable disease-relevant targets. Unlike traditional inhibitors, degraders act substoichiometrically and rely on the hijacked proteolysis machinery, which can also act as an entry point for resistance. To fully harness the potential of targeted protein degradation, it is crucial to comprehend resistance mechanisms and formulate effective strategies to overcome them. We conducted a chemical screening to identify synthetic lethal vulnerabilities of cancer cells that exhibit widespread resistance to degraders. Comparative profiling followed by tailored optimization delivered the small molecule RBS-10, which shows preferential cytotoxicity against cells pan-resistant to degraders. Multiomics deconvolution of the mechanism of action revealed that RBS-10 acts as a prodrug bioactivated by the oxidoreductase enzyme NQO1, which is highly overexpressed in our resistance models. Collectively, our work informs on NQO1 as an actionable vulnerability to overcome resistance to degraders and as a biomarker to selectively exploit bioactivatable prodrugs in cancer.
 
- 
-
Discovery and Mechanistic Elucidation of NQO1-Bioactivatable Small Molecules That Overcome Resistance to Degraders.,Barbosa BM, Sfyaki A, Rafael S, Jose-Duran F, Pous J, Sanchez-Zarzalejo C, Perez-Lopez C, Vilanova M, Cigler M, Gay M, Vilaseca M, Winter GE, Riera A, Mayor-Ruiz C Angew Chem Int Ed Engl. 2023 Dec 28:e202316730. doi: 10.1002/anie.202316730. PMID:38153885<ref>PMID:38153885</ref>
 
- 
-
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
 
-
</div>
 
-
<div class="pdbe-citations 8pqn" style="background-color:#fffaf0;"></div>
 
-
== References ==
 
-
<references/>
 
__TOC__
__TOC__
</StructureSection>
</StructureSection>

Current revision

NQO1 bound to RBS-10

PDB ID 8pqn

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools