6iwb

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Current revision (10:35, 27 March 2024) (edit) (undo)
 
Line 3: Line 3:
<StructureSection load='6iwb' size='340' side='right'caption='[[6iwb]], [[Resolution|resolution]] 2.50&Aring;' scene=''>
<StructureSection load='6iwb' size='340' side='right'caption='[[6iwb]], [[Resolution|resolution]] 2.50&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
-
<table><tr><td colspan='2'>[[6iwb]] is a 4 chain structure with sequence from [http://en.wikipedia.org/wiki/Human Human]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6IWB OCA]. For a <b>guided tour on the structure components</b> use [http://proteopedia.org/fgij/fg.htm?mol=6IWB FirstGlance]. <br>
+
<table><tr><td colspan='2'>[[6iwb]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6IWB OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=6IWB FirstGlance]. <br>
-
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr>
+
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.5&#8491;</td></tr>
-
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">APOE ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN]), BCL2 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN])</td></tr>
+
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr>
-
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://proteopedia.org/fgij/fg.htm?mol=6iwb FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6iwb OCA], [http://pdbe.org/6iwb PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6iwb RCSB], [http://www.ebi.ac.uk/pdbsum/6iwb PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6iwb ProSAT]</span></td></tr>
+
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=6iwb FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6iwb OCA], [https://pdbe.org/6iwb PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=6iwb RCSB], [https://www.ebi.ac.uk/pdbsum/6iwb PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=6iwb ProSAT]</span></td></tr>
</table>
</table>
== Disease ==
== Disease ==
-
[[http://www.uniprot.org/uniprot/APOE_HUMAN APOE_HUMAN]] Defects in APOE are a cause of hyperlipoproteinemia type 3 (HLPP3) [MIM:[http://omim.org/entry/107741 107741]]; also known as familial dysbetalipoproteinemia. Individuals with HLPP3 are clinically characterized by xanthomas, yellowish lipid deposits in the palmar crease, or less specific on tendons and on elbows. The disorder rarely manifests before the third decade in men. In women, it is usually expressed only after the menopause. The vast majority of the patients are homozygous for APOE*2 alleles. More severe cases of HLPP3 have also been observed in individuals heterozygous for rare APOE variants. The influence of APOE on lipid levels is often suggested to have major implications for the risk of coronary artery disease (CAD). Individuals carrying the common APOE*4 variant are at higher risk of CAD.<ref>PMID:8346443</ref> <ref>PMID:2556398</ref> <ref>PMID:1674745</ref> <ref>PMID:8287539</ref> <ref>PMID:22481068</ref> Genetic variations in APOE are associated with Alzheimer disease type 2 (AD2) [MIM:[http://omim.org/entry/104310 104310]]. It is a late-onset neurodegenerative disorder characterized by progressive dementia, loss of cognitive abilities, and deposition of fibrillar amyloid proteins as intraneuronal neurofibrillary tangles, extracellular amyloid plaques and vascular amyloid deposits. The major constituent of these plaques is the neurotoxic amyloid-beta-APP 40-42 peptide (s), derived proteolytically from the transmembrane precursor protein APP by sequential secretase processing. The cytotoxic C-terminal fragments (CTFs) and the caspase-cleaved products such as C31 derived from APP, are also implicated in neuronal death. Note=The APOE*4 allele is genetically associated with the common late onset familial and sporadic forms of Alzheimer disease. Risk for AD increased from 20% to 90% and mean age at onset decreased from 84 to 68 years with increasing number of APOE*4 alleles in 42 families with late onset AD. Thus APOE*4 gene dose is a major risk factor for late onset AD and, in these families, homozygosity for APOE*4 was virtually sufficient to cause AD by age 80. The mechanism by which APOE*4 participates in pathogenesis is not known.<ref>PMID:8346443</ref> Defects in APOE are a cause of sea-blue histiocyte disease (SBHD) [MIM:[http://omim.org/entry/269600 269600]]; also known as sea-blue histiocytosis. This disorder is characterized by splenomegaly, mild thrombocytopenia and, in the bone marrow, numerous histiocytes containing cytoplasmic granules which stain bright blue with the usual hematologic stains. The syndrome is the consequence of an inherited metabolic defect analogous to Gaucher disease and other sphingolipidoses.<ref>PMID:8346443</ref> <ref>PMID:11095479</ref> <ref>PMID:16094309</ref> Defects in APOE are a cause of lipoprotein glomerulopathy (LPG) [MIM:[http://omim.org/entry/611771 611771]]. LPG is an uncommon kidney disease characterized by proteinuria, progressive kidney failure, and distinctive lipoprotein thrombi in glomerular capillaries. It mainly affects people of Japanese and Chinese origin. The disorder has rarely been described in Caucasians.<ref>PMID:8346443</ref> <ref>PMID:9176854</ref> <ref>PMID:10432380</ref> <ref>PMID:18077821</ref> Defects in APOE are a cause of familial hypercholesterolemia (FH) [MIM:[http://omim.org/entry/143890 143890]]. FH is a condition characterized by elevated circulating cholesterol contained in either low-density lipoproteins alone or also in very-low-density lipoproteins.<ref>PMID:8346443</ref> <ref>PMID:22949395</ref> [[http://www.uniprot.org/uniprot/BCL2_HUMAN BCL2_HUMAN]] Note=A chromosomal aberration involving BCL2 has been found in chronic lymphatic leukemia. Translocation t(14;18)(q32;q21) with immunoglobulin gene regions. BCL2 mutations found in non-Hodgkin lymphomas carrying the chromosomal translocation could be attributed to the Ig somatic hypermutation mechanism resulting in nucleotide transitions.
+
[https://www.uniprot.org/uniprot/APOE_HUMAN APOE_HUMAN] Defects in APOE are a cause of hyperlipoproteinemia type 3 (HLPP3) [MIM:[https://omim.org/entry/107741 107741]; also known as familial dysbetalipoproteinemia. Individuals with HLPP3 are clinically characterized by xanthomas, yellowish lipid deposits in the palmar crease, or less specific on tendons and on elbows. The disorder rarely manifests before the third decade in men. In women, it is usually expressed only after the menopause. The vast majority of the patients are homozygous for APOE*2 alleles. More severe cases of HLPP3 have also been observed in individuals heterozygous for rare APOE variants. The influence of APOE on lipid levels is often suggested to have major implications for the risk of coronary artery disease (CAD). Individuals carrying the common APOE*4 variant are at higher risk of CAD.<ref>PMID:8346443</ref> <ref>PMID:2556398</ref> <ref>PMID:1674745</ref> <ref>PMID:8287539</ref> <ref>PMID:22481068</ref> Genetic variations in APOE are associated with Alzheimer disease type 2 (AD2) [MIM:[https://omim.org/entry/104310 104310]. It is a late-onset neurodegenerative disorder characterized by progressive dementia, loss of cognitive abilities, and deposition of fibrillar amyloid proteins as intraneuronal neurofibrillary tangles, extracellular amyloid plaques and vascular amyloid deposits. The major constituent of these plaques is the neurotoxic amyloid-beta-APP 40-42 peptide (s), derived proteolytically from the transmembrane precursor protein APP by sequential secretase processing. The cytotoxic C-terminal fragments (CTFs) and the caspase-cleaved products such as C31 derived from APP, are also implicated in neuronal death. Note=The APOE*4 allele is genetically associated with the common late onset familial and sporadic forms of Alzheimer disease. Risk for AD increased from 20% to 90% and mean age at onset decreased from 84 to 68 years with increasing number of APOE*4 alleles in 42 families with late onset AD. Thus APOE*4 gene dose is a major risk factor for late onset AD and, in these families, homozygosity for APOE*4 was virtually sufficient to cause AD by age 80. The mechanism by which APOE*4 participates in pathogenesis is not known.<ref>PMID:8346443</ref> Defects in APOE are a cause of sea-blue histiocyte disease (SBHD) [MIM:[https://omim.org/entry/269600 269600]; also known as sea-blue histiocytosis. This disorder is characterized by splenomegaly, mild thrombocytopenia and, in the bone marrow, numerous histiocytes containing cytoplasmic granules which stain bright blue with the usual hematologic stains. The syndrome is the consequence of an inherited metabolic defect analogous to Gaucher disease and other sphingolipidoses.<ref>PMID:8346443</ref> <ref>PMID:11095479</ref> <ref>PMID:16094309</ref> Defects in APOE are a cause of lipoprotein glomerulopathy (LPG) [MIM:[https://omim.org/entry/611771 611771]. LPG is an uncommon kidney disease characterized by proteinuria, progressive kidney failure, and distinctive lipoprotein thrombi in glomerular capillaries. It mainly affects people of Japanese and Chinese origin. The disorder has rarely been described in Caucasians.<ref>PMID:8346443</ref> <ref>PMID:9176854</ref> <ref>PMID:10432380</ref> <ref>PMID:18077821</ref> Defects in APOE are a cause of familial hypercholesterolemia (FH) [MIM:[https://omim.org/entry/143890 143890]. FH is a condition characterized by elevated circulating cholesterol contained in either low-density lipoproteins alone or also in very-low-density lipoproteins.<ref>PMID:8346443</ref> <ref>PMID:22949395</ref>
== Function ==
== Function ==
-
[[http://www.uniprot.org/uniprot/APOE_HUMAN APOE_HUMAN]] Mediates the binding, internalization, and catabolism of lipoprotein particles. It can serve as a ligand for the LDL (apo B/E) receptor and for the specific apo-E receptor (chylomicron remnant) of hepatic tissues. [[http://www.uniprot.org/uniprot/BCL2_HUMAN BCL2_HUMAN]] Suppresses apoptosis in a variety of cell systems including factor-dependent lymphohematopoietic and neural cells. Regulates cell death by controlling the mitochondrial membrane permeability. Appears to function in a feedback loop system with caspases. Inhibits caspase activity either by preventing the release of cytochrome c from the mitochondria and/or by binding to the apoptosis-activating factor (APAF-1).<ref>PMID:18570871</ref>
+
[https://www.uniprot.org/uniprot/APOE_HUMAN APOE_HUMAN] Mediates the binding, internalization, and catabolism of lipoprotein particles. It can serve as a ligand for the LDL (apo B/E) receptor and for the specific apo-E receptor (chylomicron remnant) of hepatic tissues.
-
<div style="background-color:#fffaf0;">
+
-
== Publication Abstract from PubMed ==
+
-
Approaches to increase the activity of chimeric antigen receptor (CAR)-T cells against solid tumors may also increase the risk of toxicity and other side effects. To improve the safety of CAR-T-cell therapy, we computationally designed a chemically disruptable heterodimer (CDH) based on the binding of two human proteins. The CDH self-assembles, can be disrupted by a small-molecule drug and has a high-affinity protein interface with minimal amino acid deviation from wild-type human proteins. We incorporated the CDH into a synthetic heterodimeric CAR, called STOP-CAR, that has an antigen-recognition chain and a CD3zeta- and CD28-containing endodomain signaling chain. We tested STOP-CAR-T cells specific for two antigens in vitro and in vivo and found similar antitumor activity compared to second-generation (2G) CAR-T cells. Timed administration of the small-molecule drug dynamically inactivated the activity of STOP-CAR-T cells. Our work highlights the potential for structure-based design to add controllable elements to synthetic cellular therapies.
+
-
 
+
-
A computationally designed chimeric antigen receptor provides a small-molecule safety switch for T-cell therapy.,Giordano-Attianese G, Gainza P, Gray-Gaillard E, Cribioli E, Shui S, Kim S, Kwak MJ, Vollers S, Corria Osorio AJ, Reichenbach P, Bonet J, Oh BH, Irving M, Coukos G, Correia BE Nat Biotechnol. 2020 Apr;38(4):426-432. doi: 10.1038/s41587-019-0403-9. Epub 2020, Feb 3. PMID:32015549<ref>PMID:32015549</ref>
+
-
 
+
-
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
+
-
</div>
+
-
<div class="pdbe-citations 6iwb" style="background-color:#fffaf0;"></div>
+
== References ==
== References ==
<references/>
<references/>
__TOC__
__TOC__
</StructureSection>
</StructureSection>
-
[[Category: Human]]
+
[[Category: Homo sapiens]]
[[Category: Large Structures]]
[[Category: Large Structures]]
-
[[Category: Correia, B E]]
+
[[Category: Correia BE]]
-
[[Category: Gainza, P]]
+
[[Category: Gainza P]]
-
[[Category: Kim, S]]
+
[[Category: Kim S]]
-
[[Category: Kwak, M J]]
+
[[Category: Kwak MJ]]
-
[[Category: Oh, B H]]
+
[[Category: Oh B-H]]
-
[[Category: Apoptosis]]
+

Current revision

Crystal structure of a computationally designed protein (LD3) in complex with BCL-2

PDB ID 6iwb

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools