1haf

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 1: Line 1:
==HEREGULIN-ALPHA EPIDERMAL GROWTH FACTOR-LIKE DOMAIN, NMR, MINIMIZED AVERAGE STRUCTURE==
==HEREGULIN-ALPHA EPIDERMAL GROWTH FACTOR-LIKE DOMAIN, NMR, MINIMIZED AVERAGE STRUCTURE==
-
<StructureSection load='1haf' size='340' side='right'caption='[[1haf]], [[NMR_Ensembles_of_Models | 1 NMR models]]' scene=''>
+
<StructureSection load='1haf' size='340' side='right'caption='[[1haf]]' scene=''>
== Structural highlights ==
== Structural highlights ==
-
<table><tr><td colspan='2'>[[1haf]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Human Human]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1HAF OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1HAF FirstGlance]. <br>
+
<table><tr><td colspan='2'>[[1haf]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1HAF OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1HAF FirstGlance]. <br>
-
</td></tr><tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat"><div style='overflow: auto; max-height: 3em;'>[[1hae|1hae]]</div></td></tr>
+
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Solution NMR</td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1haf FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1haf OCA], [https://pdbe.org/1haf PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1haf RCSB], [https://www.ebi.ac.uk/pdbsum/1haf PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1haf ProSAT]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1haf FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1haf OCA], [https://pdbe.org/1haf PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1haf RCSB], [https://www.ebi.ac.uk/pdbsum/1haf PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1haf ProSAT]</span></td></tr>
</table>
</table>
== Disease ==
== Disease ==
-
[[https://www.uniprot.org/uniprot/NRG1_HUMAN NRG1_HUMAN]] Note=A chromosomal aberration involving NRG1 produces gamma-heregulin. Translocation t(8;11) with TENM4. The translocation fuses the 5'-end of TENM4 to NRG1 (isoform 8). The product of this translocation was first thought to be an alternatively spliced isoform. Gamma-heregulin is a soluble activating ligand for the ERBB2-ERBB3 receptor complex and acts as an autocrine growth factor in a specific breast cancer cell line (MDA-MB-175). Not detected in breast carcinoma samples, including ductal, lobular, medullary, and mucinous histological types, neither in other breast cancer cell lines.
+
[https://www.uniprot.org/uniprot/NRG1_HUMAN NRG1_HUMAN] Note=A chromosomal aberration involving NRG1 produces gamma-heregulin. Translocation t(8;11) with TENM4. The translocation fuses the 5'-end of TENM4 to NRG1 (isoform 8). The product of this translocation was first thought to be an alternatively spliced isoform. Gamma-heregulin is a soluble activating ligand for the ERBB2-ERBB3 receptor complex and acts as an autocrine growth factor in a specific breast cancer cell line (MDA-MB-175). Not detected in breast carcinoma samples, including ductal, lobular, medullary, and mucinous histological types, neither in other breast cancer cell lines.
== Function ==
== Function ==
-
[[https://www.uniprot.org/uniprot/NRG1_HUMAN NRG1_HUMAN]] Direct ligand for ERBB3 and ERBB4 tyrosine kinase receptors. Concomitantly recruits ERBB1 and ERBB2 coreceptors, resulting in ligand-stimulated tyrosine phosphorylation and activation of the ERBB receptors. The multiple isoforms perform diverse functions such as inducing growth and differentiation of epithelial, glial, neuronal, and skeletal muscle cells; inducing expression of acetylcholine receptor in synaptic vesicles during the formation of the neuromuscular junction; stimulating lobuloalveolar budding and milk production in the mammary gland and inducing differentiation of mammary tumor cells; stimulating Schwann cell proliferation; implication in the development of the myocardium such as trabeculation of the developing heart. Isoform 10 may play a role in motor and sensory neuron development.<ref>PMID:1348215</ref> <ref>PMID:7902537</ref>
+
[https://www.uniprot.org/uniprot/NRG1_HUMAN NRG1_HUMAN] Direct ligand for ERBB3 and ERBB4 tyrosine kinase receptors. Concomitantly recruits ERBB1 and ERBB2 coreceptors, resulting in ligand-stimulated tyrosine phosphorylation and activation of the ERBB receptors. The multiple isoforms perform diverse functions such as inducing growth and differentiation of epithelial, glial, neuronal, and skeletal muscle cells; inducing expression of acetylcholine receptor in synaptic vesicles during the formation of the neuromuscular junction; stimulating lobuloalveolar budding and milk production in the mammary gland and inducing differentiation of mammary tumor cells; stimulating Schwann cell proliferation; implication in the development of the myocardium such as trabeculation of the developing heart. Isoform 10 may play a role in motor and sensory neuron development.<ref>PMID:1348215</ref> <ref>PMID:7902537</ref>
== Evolutionary Conservation ==
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
[[Image:Consurf_key_small.gif|200px|right]]
Line 21: Line 21:
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1haf ConSurf].
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1haf ConSurf].
<div style="clear:both"></div>
<div style="clear:both"></div>
-
<div style="background-color:#fffaf0;">
 
-
== Publication Abstract from PubMed ==
 
-
The solution structure of the 63-residue heregulin-alpha (HRG-alpha) epidermal growth factor (EGF)-like domain, corresponding to residues 177-239 of HRG-alpha, has been determined to high resolution using data from two-dimensional and three-dimensional homo- and heteronuclear NMR spectroscopy. The structure is based on a total of 887 internuclear distance and dihedral restraints derived from data obtained using unlabeled and uniformly 15N-labeled protein samples, at pH 4.5, 20 degrees C. A total of 20 structures were calculated using a hybrid distance geometry-simulated annealing approach with the program DGII, followed by restrained molecular dynamics using the program DISCOVER. The average maximum violations are 0.12 +/- 0.01 angstroms and 1.4 +/- 0.3 degrees for distance and dihedral restraints, respectively. The backbone (N,C(alpha),C) atomic rms distribution about the mean coordinates for residues 3-23 and 31-49 is 0.29 +/- 0/07 angstroms. The N-and C-terminal residues (1-2 and 50-63) and 24-30 are disordered. Comparison of the HRG-alpha EGF-like domain structure with the previously determined structure of human EGF [Hommel et al. (1992) J. Mol. Biol. 227, 271-282] reveals a high degree of structural similarity; excluding the N-terminal region (residues 1-13), the disordered phi-loop region (residues 24-30) that contains a three-residue insertion in HRG-alpha relative to hEGF, and the disordered C-terminal region (residues 50-63), the C(alpha) alignment between the HRG-alpha and hEGF minimized mean structures has a rms difference of approximately 1 angstrom. In HRG-alpha the N-terminal residues 2-6 form a well-defined beta strand rather than being disordered as found for hEGF. This structural difference correlates with functional data which suggest that the N-terminal region of the HRG-alpha EGF-like domain is responsible for the observed receptor specificity differences between HRG-alpha and EGF.
 
- 
-
High-resolution solution structure of the EGF-like domain of heregulin-alpha.,Jacobsen NE, Abadi N, Sliwkowski MX, Reilly D, Skelton NJ, Fairbrother WJ Biochemistry. 1996 Mar 19;35(11):3402-17. PMID:8639490<ref>PMID:8639490</ref>
 
- 
-
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
 
-
</div>
 
-
<div class="pdbe-citations 1haf" style="background-color:#fffaf0;"></div>
 
== References ==
== References ==
<references/>
<references/>
__TOC__
__TOC__
</StructureSection>
</StructureSection>
-
[[Category: Human]]
+
[[Category: Homo sapiens]]
[[Category: Large Structures]]
[[Category: Large Structures]]
-
[[Category: Fairbrother, W J]]
+
[[Category: Fairbrother WJ]]
-
[[Category: Jacobsen, N E]]
+
[[Category: Jacobsen NE]]
-
[[Category: Skelton, N J]]
+
[[Category: Skelton NJ]]
-
[[Category: Growth factor]]
+

Revision as of 11:29, 27 March 2024

HEREGULIN-ALPHA EPIDERMAL GROWTH FACTOR-LIKE DOMAIN, NMR, MINIMIZED AVERAGE STRUCTURE

PDB ID 1haf

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools