1hc8
From Proteopedia
(Difference between revisions)
Line 3: | Line 3: | ||
<StructureSection load='1hc8' size='340' side='right'caption='[[1hc8]], [[Resolution|resolution]] 2.80Å' scene=''> | <StructureSection load='1hc8' size='340' side='right'caption='[[1hc8]], [[Resolution|resolution]] 2.80Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
- | <table><tr><td colspan='2'>[[1hc8]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/ ] and [https://en.wikipedia.org/wiki/ | + | <table><tr><td colspan='2'>[[1hc8]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Escherichia_coli Escherichia coli] and [https://en.wikipedia.org/wiki/Geobacillus_stearothermophilus Geobacillus stearothermophilus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1HC8 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1HC8 FirstGlance]. <br> |
- | </td></tr><tr id=' | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.8Å</td></tr> |
- | <tr id=' | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=GTP:GUANOSINE-5-TRIPHOSPHATE'>GTP</scene>, <scene name='pdbligand=K:POTASSIUM+ION'>K</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=OS:OSMIUM+ION'>OS</scene></td></tr> |
- | < | + | |
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1hc8 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1hc8 OCA], [https://pdbe.org/1hc8 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1hc8 RCSB], [https://www.ebi.ac.uk/pdbsum/1hc8 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1hc8 ProSAT]</span></td></tr> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1hc8 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1hc8 OCA], [https://pdbe.org/1hc8 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1hc8 RCSB], [https://www.ebi.ac.uk/pdbsum/1hc8 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1hc8 ProSAT]</span></td></tr> | ||
</table> | </table> | ||
== Function == | == Function == | ||
- | + | [https://www.uniprot.org/uniprot/RL11_GEOSE RL11_GEOSE] Forms part of the ribosomal stalk which helps the ribosome interact with GTP-bound translation factors. | |
== Evolutionary Conservation == | == Evolutionary Conservation == | ||
[[Image:Consurf_key_small.gif|200px|right]] | [[Image:Consurf_key_small.gif|200px|right]] | ||
Line 21: | Line 20: | ||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1hc8 ConSurf]. | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1hc8 ConSurf]. | ||
<div style="clear:both"></div> | <div style="clear:both"></div> | ||
- | <div style="background-color:#fffaf0;"> | ||
- | == Publication Abstract from PubMed == | ||
- | The structure of a 58 nucleotide ribosomal RNA fragment buries several phosphate groups of a hairpin loop within a large tertiary core. During refinement of an X-ray crystal structure containing this RNA, a potassium ion was found to be contacted by six oxygen atoms from the buried phosphate groups; the ion is contained completely within the solvent-accessible surface of the RNA. The electrostatic potential at the ion chelation site is unusually large, and more than compensates for the substantial energetic penalties associated with partial dehydration of the ion and displacement of delocalized ions. The very large predicted binding free energy, approximately -30 kcal/mol, implies that the site must be occupied for the RNA to fold. These findings agree with previous studies of the ion-dependent folding of tertiary structure in this RNA, which concluded that a monovalent ion was bound in a partially dehydrated environment where Mg2+ could not easily compete for binding. By compensating the unfavorable free energy of buried phosphate groups with a chelated ion, the RNA is able to create a larger and more complex tertiary fold than would be possible otherwise. | ||
- | |||
- | A compact RNA tertiary structure contains a buried backbone-K+ complex.,Conn GL, Gittis AG, Lattman EE, Misra VK, Draper DE J Mol Biol. 2002 May 10;318(4):963-73. PMID:12054794<ref>PMID:12054794</ref> | ||
- | |||
- | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
- | </div> | ||
- | <div class="pdbe-citations 1hc8" style="background-color:#fffaf0;"></div> | ||
==See Also== | ==See Also== | ||
- | *[[Ribosomal protein L11|Ribosomal protein L11]] | + | *[[Ribosomal protein L11 3D structures|Ribosomal protein L11 3D structures]] |
- | + | ||
- | + | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> | ||
- | [[Category: | + | [[Category: Escherichia coli]] |
+ | [[Category: Geobacillus stearothermophilus]] | ||
[[Category: Large Structures]] | [[Category: Large Structures]] | ||
- | [[Category: Conn | + | [[Category: Conn GL]] |
- | [[Category: Draper | + | [[Category: Draper DE]] |
- | [[Category: Gittis | + | [[Category: Gittis AG]] |
- | [[Category: Lattman | + | [[Category: Lattman EE]] |
- | + | ||
- | + | ||
- | + | ||
- | + |
Revision as of 11:30, 27 March 2024
CRYSTAL STRUCTURE OF A CONSERVED RIBOSOMAL PROTEIN-RNA COMPLEX
|