1ygh

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Current revision (06:20, 3 April 2024) (edit) (undo)
 
Line 20: Line 20:
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1ygh ConSurf].
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1ygh ConSurf].
<div style="clear:both"></div>
<div style="clear:both"></div>
-
<div style="background-color:#fffaf0;">
 
-
== Publication Abstract from PubMed ==
 
-
The yeast GCN5 (yGCN5) transcriptional coactivator functions as a histone acetyltransferase (HAT) to promote transcriptional activation. Here, we present the high resolution crystal structure of the HAT domain of yGCN5 and probe the functional importance of a conserved glutamate residue. The structure reveals a central protein core associated with AcCoA binding that appears to be structurally conserved among a superfamily of N-acetyltransferases, including yeast histone acetyltransferase 1 and Serratia marcescens aminoglycoside 3-N-acetyltransferase. A pronounced cleft lying above this core, and flanked by N- and C-terminal regions that show no sequence conservation within N-acetyltransferase enzymes, is implicated by cross-species conservation and mutagenesis studies to be a site for histone substrate binding and catalysis. Located at the bottom of this cleft is a conserved glutamate residue (E173) that is in position to play an important catalytic role in histone acetylation. Functional analysis of an E173Q mutant yGCN5 protein implicates glutamate 173 to function as a general base for catalysis. Together, a correlation of the yGCN5 structure with functionally debilitating yGCN5 mutations provides a paradigm for understanding the structure/function relationships of the growing number of transcriptional regulators that function as histone acetyltransferase enzymes.
 
- 
-
Crystal structure and mechanism of histone acetylation of the yeast GCN5 transcriptional coactivator.,Trievel RC, Rojas JR, Sterner DE, Venkataramani RN, Wang L, Zhou J, Allis CD, Berger SL, Marmorstein R Proc Natl Acad Sci U S A. 1999 Aug 3;96(16):8931-6. PMID:10430873<ref>PMID:10430873</ref>
 
- 
-
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
 
-
</div>
 
-
<div class="pdbe-citations 1ygh" style="background-color:#fffaf0;"></div>
 
==See Also==
==See Also==

Current revision

HAT DOMAIN OF GCN5 FROM SACCHAROMYCES CEREVISIAE

PDB ID 1ygh

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools