1jg0
From Proteopedia
(Difference between revisions)
Line 3: | Line 3: | ||
<StructureSection load='1jg0' size='340' side='right'caption='[[1jg0]], [[Resolution|resolution]] 2.00Å' scene=''> | <StructureSection load='1jg0' size='340' side='right'caption='[[1jg0]], [[Resolution|resolution]] 2.00Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
- | <table><tr><td colspan='2'>[[1jg0]] is a 2 chain structure with sequence from [ | + | <table><tr><td colspan='2'>[[1jg0]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Escherichia_coli Escherichia coli]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1JG0 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1JG0 FirstGlance]. <br> |
- | </td></tr><tr id=' | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2Å</td></tr> |
- | <tr id=' | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CXM:N-CARBOXYMETHIONINE'>CXM</scene>, <scene name='pdbligand=DDT:N,O-DIDANSYL-L-TYROSINE'>DDT</scene>, <scene name='pdbligand=UMP:2-DEOXYURIDINE+5-MONOPHOSPHATE'>UMP</scene></td></tr> |
- | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1jg0 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1jg0 OCA], [https://pdbe.org/1jg0 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1jg0 RCSB], [https://www.ebi.ac.uk/pdbsum/1jg0 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1jg0 ProSAT]</span></td></tr> | |
- | + | ||
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[ | + | |
</table> | </table> | ||
== Function == | == Function == | ||
- | [ | + | [https://www.uniprot.org/uniprot/TYSY_ECOLI TYSY_ECOLI] Provides the sole de novo source of dTMP for DNA biosynthesis. This protein also binds to its mRNA thus repressing its own translation. |
== Evolutionary Conservation == | == Evolutionary Conservation == | ||
[[Image:Consurf_key_small.gif|200px|right]] | [[Image:Consurf_key_small.gif|200px|right]] | ||
Line 22: | Line 20: | ||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1jg0 ConSurf]. | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1jg0 ConSurf]. | ||
<div style="clear:both"></div> | <div style="clear:both"></div> | ||
- | <div style="background-color:#fffaf0;"> | ||
- | == Publication Abstract from PubMed == | ||
- | BACKGROUND: Protein plasticity in response to ligand binding abrogates the notion of a rigid receptor site. Thus, computational docking alone misses important prospective drug design leads. Bacterial-specific inhibitors of an essential enzyme, thymidylate synthase (TS), were developed using a combination of computer-based screening followed by in-parallel synthetic elaboration and enzyme assay [Tondi et al. (1999) Chem. Biol. 6, 319-331]. Specificity was achieved through protein plasticity and despite the very high sequence conservation of the enzyme between species. RESULTS: The most potent of the inhibitors synthesized, N,O-didansyl-L-tyrosine (DDT), binds to Lactobacillus casei TS (LcTS) with 35-fold higher affinity and to Escherichia coli TS (EcTS) with 24-fold higher affinity than to human TS (hTS). To reveal the molecular basis for this specificity, we have determined the crystal structure of EcTS complexed with DDT and 2'-deoxyuridine-5'-monophosphate (dUMP). The 2.0 A structure shows that DDT binds to EcTS in a conformation not predicted by molecular docking studies and substantially differently than other TS inhibitors. Binding of DDT is accompanied by large rearrangements of the protein both near and distal to the enzyme's active site with movement of C alpha carbons up to 6 A relative to other ternary complexes. This protein plasticity results in novel interactions with DDT including the formation of hydrogen bonds and van der Waals interactions to residues conserved in bacterial TS but not hTS and which are hypothesized to account for DDT's specificity. The conformation DDT adopts when bound to EcTS explains the activity of several other LcTS inhibitors synthesized in-parallel with DDT suggesting that DDT binds to the two enzymes in similar orientations. CONCLUSIONS: Dramatic protein rearrangements involving both main and side chain atoms play an important role in the recognition of DDT by EcTS and highlight the importance of incorporating protein plasticity in drug design. The crystal structure of the EcTS/dUMP/DDT complex is a model system to develop more selective TS inhibitors aimed at pathogenic bacterial species. The crystal structure also suggests a general formula for identifying regions of TS and other enzymes that may be treated as flexible to aid in computational methods of drug discovery. | ||
- | |||
- | Predicting and harnessing protein flexibility in the design of species-specific inhibitors of thymidylate synthase.,Fritz TA, Tondi D, Finer-Moore JS, Costi MP, Stroud RM Chem Biol. 2001 Oct;8(10):981-95. PMID:11590022<ref>PMID:11590022</ref> | ||
- | |||
- | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
- | </div> | ||
- | <div class="pdbe-citations 1jg0" style="background-color:#fffaf0;"></div> | ||
==See Also== | ==See Also== | ||
*[[Thymidylate synthase 3D structures|Thymidylate synthase 3D structures]] | *[[Thymidylate synthase 3D structures|Thymidylate synthase 3D structures]] | ||
- | == References == | ||
- | <references/> | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> | ||
- | [[Category: | + | [[Category: Escherichia coli]] |
[[Category: Large Structures]] | [[Category: Large Structures]] | ||
- | + | [[Category: Costi MP]] | |
- | [[Category: Costi | + | [[Category: Finer-Moore JS]] |
- | [[Category: Finer-Moore | + | [[Category: Fritz TA]] |
- | [[Category: Fritz | + | [[Category: Stroud RM]] |
- | [[Category: Stroud | + | [[Category: Tondi D]] |
- | [[Category: Tondi | + | |
- | + | ||
- | + |
Revision as of 07:52, 3 April 2024
Crystal structure of Escherichia coli thymidylate synthase complexed with 2'-deoxyuridine-5'-monophosphate and N,O-didansyl-L-tyrosine
|