1mkk

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 3: Line 3:
<StructureSection load='1mkk' size='340' side='right'caption='[[1mkk]], [[Resolution|resolution]] 1.32&Aring;' scene=''>
<StructureSection load='1mkk' size='340' side='right'caption='[[1mkk]], [[Resolution|resolution]] 1.32&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
-
<table><tr><td colspan='2'>[[1mkk]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Human Human]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1MKK OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1MKK FirstGlance]. <br>
+
<table><tr><td colspan='2'>[[1mkk]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1MKK OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1MKK FirstGlance]. <br>
-
</td></tr><tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat"><div style='overflow: auto; max-height: 3em;'>[[2vpf|2vpf]], [[1mjv|1mjv]], [[1mkg|1mkg]]</div></td></tr>
+
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.32&#8491;</td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1mkk FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1mkk OCA], [https://pdbe.org/1mkk PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1mkk RCSB], [https://www.ebi.ac.uk/pdbsum/1mkk PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1mkk ProSAT]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1mkk FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1mkk OCA], [https://pdbe.org/1mkk PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1mkk RCSB], [https://www.ebi.ac.uk/pdbsum/1mkk PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1mkk ProSAT]</span></td></tr>
</table>
</table>
== Disease ==
== Disease ==
-
[[https://www.uniprot.org/uniprot/VEGFA_HUMAN VEGFA_HUMAN]] Defects in VEGFA are a cause of susceptibility to microvascular complications of diabetes type 1 (MVCD1) [MIM:[https://omim.org/entry/603933 603933]]. These are pathological conditions that develop in numerous tissues and organs as a consequence of diabetes mellitus. They include diabetic retinopathy, diabetic nephropathy leading to end-stage renal disease, and diabetic neuropathy. Diabetic retinopathy remains the major cause of new-onset blindness among diabetic adults. It is characterized by vascular permeability and increased tissue ischemia and angiogenesis.
+
[https://www.uniprot.org/uniprot/VEGFA_HUMAN VEGFA_HUMAN] Defects in VEGFA are a cause of susceptibility to microvascular complications of diabetes type 1 (MVCD1) [MIM:[https://omim.org/entry/603933 603933]. These are pathological conditions that develop in numerous tissues and organs as a consequence of diabetes mellitus. They include diabetic retinopathy, diabetic nephropathy leading to end-stage renal disease, and diabetic neuropathy. Diabetic retinopathy remains the major cause of new-onset blindness among diabetic adults. It is characterized by vascular permeability and increased tissue ischemia and angiogenesis.
== Function ==
== Function ==
-
[[https://www.uniprot.org/uniprot/VEGFA_HUMAN VEGFA_HUMAN]] Growth factor active in angiogenesis, vasculogenesis and endothelial cell growth. Induces endothelial cell proliferation, promotes cell migration, inhibits apoptosis and induces permeabilization of blood vessels. Binds to the FLT1/VEGFR1 and KDR/VEGFR2 receptors, heparan sulfate and heparin. NRP1/Neuropilin-1 binds isoforms VEGF-165 and VEGF-145. Isoform VEGF165B binds to KDR but does not activate downstream signaling pathways, does not activate angiogenesis and inhibits tumor growth.<ref>PMID:11427521</ref> <ref>PMID:15520188</ref> <ref>PMID:16489009</ref>
+
[https://www.uniprot.org/uniprot/VEGFA_HUMAN VEGFA_HUMAN] Growth factor active in angiogenesis, vasculogenesis and endothelial cell growth. Induces endothelial cell proliferation, promotes cell migration, inhibits apoptosis and induces permeabilization of blood vessels. Binds to the FLT1/VEGFR1 and KDR/VEGFR2 receptors, heparan sulfate and heparin. NRP1/Neuropilin-1 binds isoforms VEGF-165 and VEGF-145. Isoform VEGF165B binds to KDR but does not activate downstream signaling pathways, does not activate angiogenesis and inhibits tumor growth.<ref>PMID:11427521</ref> <ref>PMID:15520188</ref> <ref>PMID:16489009</ref>
== Evolutionary Conservation ==
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
[[Image:Consurf_key_small.gif|200px|right]]
Line 21: Line 21:
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1mkk ConSurf].
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1mkk ConSurf].
<div style="clear:both"></div>
<div style="clear:both"></div>
-
<div style="background-color:#fffaf0;">
 
-
== Publication Abstract from PubMed ==
 
-
Cystine knots consist of three intertwined disulfide bridges and are considered major determinants of protein stability in proteins in which they occur. We questioned this function and observed that removal of individual disulfide bridges in human vascular endothelial growth factor (VEGF) does not reduce its thermodynamic stability but reduces its unexpected high thermal stability of 108 degrees C by up to 40 degrees C. In wild-type VEGF (deltaG(u,25)(0) = 5.1 kcal.mol(-1)), the knot is responsible for a large entropic stabilization of TdeltaS(u,25)(0) = -39.3 kcal mol(-1), which is compensated for by a deltaH(u,25)(0) of -34.2 kcal mol(-1). In the disulfide-deficient mutants, this entropic stabilization disappears, but instead of a decrease, we observe an increase in the thermodynamic stability by about 2 kcal.mol(-1). A detailed crystallographic analysis of the mutant structures suggests a role of the cystine knot motif in protein folding rather than in the stabilization of the folded state. When assuming that the sequential order of the disulfide bridge formation is conserved between VEGF and glycoprotein alpha-subunit, the crystal structure of the mutant C61A-C104A, which deviates by a root mean square deviation of more than 2.2 A from wild-type VEGF, identifies a true folding intermediate of VEGF.
 
- 
-
The cystine knot promotes folding and not thermodynamic stability in vascular endothelial growth factor.,Muller YA, Heiring C, Misselwitz R, Welfle K, Welfle H J Biol Chem. 2002 Nov 8;277(45):43410-6. Epub 2002 Aug 30. PMID:12207021<ref>PMID:12207021</ref>
 
- 
-
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
 
-
</div>
 
-
<div class="pdbe-citations 1mkk" style="background-color:#fffaf0;"></div>
 
==See Also==
==See Also==
Line 37: Line 28:
__TOC__
__TOC__
</StructureSection>
</StructureSection>
-
[[Category: Human]]
+
[[Category: Homo sapiens]]
[[Category: Large Structures]]
[[Category: Large Structures]]
-
[[Category: Heiring, C]]
+
[[Category: Heiring C]]
-
[[Category: Misselwitz, R]]
+
[[Category: Misselwitz R]]
-
[[Category: Muller, Y A]]
+
[[Category: Muller YA]]
-
[[Category: Welfle, H]]
+
[[Category: Welfle H]]
-
[[Category: Welfle, K]]
+
[[Category: Welfle K]]
-
[[Category: Cystine-knot growth factor]]
+
-
[[Category: Hormone-growth factor complex]]
+

Revision as of 08:37, 10 April 2024

Disulfide deficient mutant of vascular endothelial growth factor A (C61A and C104A)

PDB ID 1mkk

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools