|
|
Line 3: |
Line 3: |
| <StructureSection load='1qrz' size='340' side='right'caption='[[1qrz]], [[Resolution|resolution]] 2.00Å' scene=''> | | <StructureSection load='1qrz' size='340' side='right'caption='[[1qrz]], [[Resolution|resolution]] 2.00Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[1qrz]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Human Human]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1QRZ OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1QRZ FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[1qrz]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1QRZ OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1QRZ FirstGlance]. <br> |
- | </td></tr><tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1qrz FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1qrz OCA], [https://pdbe.org/1qrz PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1qrz RCSB], [https://www.ebi.ac.uk/pdbsum/1qrz PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1qrz ProSAT]</span></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2Å</td></tr> |
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1qrz FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1qrz OCA], [https://pdbe.org/1qrz PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1qrz RCSB], [https://www.ebi.ac.uk/pdbsum/1qrz PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1qrz ProSAT]</span></td></tr> |
| </table> | | </table> |
| == Disease == | | == Disease == |
- | [[https://www.uniprot.org/uniprot/PLMN_HUMAN PLMN_HUMAN]] Defects in PLG are the cause of plasminogen deficiency (PLGD) [MIM:[https://omim.org/entry/217090 217090]]. PLGD is characterized by decreased serum plasminogen activity. Two forms of the disorder are distinguished: type 1 deficiency is additionally characterized by decreased plasminogen antigen levels and clinical symptoms, whereas type 2 deficiency, also known as dysplasminogenemia, is characterized by normal, or slightly reduced antigen levels, and absence of clinical manifestations. Plasminogen deficiency type 1 results in markedly impaired extracellular fibrinolysis and chronic mucosal pseudomembranous lesions due to subepithelial fibrin deposition and inflammation. The most common clinical manifestation of type 1 deficiency is ligneous conjunctivitis in which pseudomembranes formation on the palpebral surfaces of the eye progresses to white, yellow-white, or red thick masses with a wood-like consistency that replace the normal mucosa.<ref>PMID:1986355</ref> <ref>PMID:8392398</ref> <ref>PMID:6216475</ref> <ref>PMID:6238949</ref> <ref>PMID:1427790</ref> <ref>PMID:9242524</ref> <ref>PMID:9858247</ref> <ref>PMID:10233898</ref>
| + | [https://www.uniprot.org/uniprot/PLMN_HUMAN PLMN_HUMAN] Defects in PLG are the cause of plasminogen deficiency (PLGD) [MIM:[https://omim.org/entry/217090 217090]. PLGD is characterized by decreased serum plasminogen activity. Two forms of the disorder are distinguished: type 1 deficiency is additionally characterized by decreased plasminogen antigen levels and clinical symptoms, whereas type 2 deficiency, also known as dysplasminogenemia, is characterized by normal, or slightly reduced antigen levels, and absence of clinical manifestations. Plasminogen deficiency type 1 results in markedly impaired extracellular fibrinolysis and chronic mucosal pseudomembranous lesions due to subepithelial fibrin deposition and inflammation. The most common clinical manifestation of type 1 deficiency is ligneous conjunctivitis in which pseudomembranes formation on the palpebral surfaces of the eye progresses to white, yellow-white, or red thick masses with a wood-like consistency that replace the normal mucosa.<ref>PMID:1986355</ref> <ref>PMID:8392398</ref> <ref>PMID:6216475</ref> <ref>PMID:6238949</ref> <ref>PMID:1427790</ref> <ref>PMID:9242524</ref> <ref>PMID:9858247</ref> <ref>PMID:10233898</ref> |
| == Function == | | == Function == |
- | [[https://www.uniprot.org/uniprot/PLMN_HUMAN PLMN_HUMAN]] Plasmin dissolves the fibrin of blood clots and acts as a proteolytic factor in a variety of other processes including embryonic development, tissue remodeling, tumor invasion, and inflammation. In ovulation, weakens the walls of the Graafian follicle. It activates the urokinase-type plasminogen activator, collagenases and several complement zymogens, such as C1 and C5. Cleavage of fibronectin and laminin leads to cell detachment and apoptosis. Also cleaves fibrin, thrombospondin and von Willebrand factor. Its role in tissue remodeling and tumor invasion may be modulated by CSPG4. Binds to cells.<ref>PMID:14699093</ref> Angiostatin is an angiogenesis inhibitor that blocks neovascularization and growth of experimental primary and metastatic tumors in vivo.<ref>PMID:14699093</ref>
| + | [https://www.uniprot.org/uniprot/PLMN_HUMAN PLMN_HUMAN] Plasmin dissolves the fibrin of blood clots and acts as a proteolytic factor in a variety of other processes including embryonic development, tissue remodeling, tumor invasion, and inflammation. In ovulation, weakens the walls of the Graafian follicle. It activates the urokinase-type plasminogen activator, collagenases and several complement zymogens, such as C1 and C5. Cleavage of fibronectin and laminin leads to cell detachment and apoptosis. Also cleaves fibrin, thrombospondin and von Willebrand factor. Its role in tissue remodeling and tumor invasion may be modulated by CSPG4. Binds to cells.<ref>PMID:14699093</ref> Angiostatin is an angiogenesis inhibitor that blocks neovascularization and growth of experimental primary and metastatic tumors in vivo.<ref>PMID:14699093</ref> |
| == Evolutionary Conservation == | | == Evolutionary Conservation == |
| [[Image:Consurf_key_small.gif|200px|right]] | | [[Image:Consurf_key_small.gif|200px|right]] |
Line 20: |
Line 21: |
| </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1qrz ConSurf]. | | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1qrz ConSurf]. |
| <div style="clear:both"></div> | | <div style="clear:both"></div> |
- | <div style="background-color:#fffaf0;"> | |
- | == Publication Abstract from PubMed == | |
- | We have solved the X-ray crystal structure of the proenzyme form of the catalytic domain of plasminogen, with the nonessential mutations M585Q, V673M, and M788L, to 2.0 A resolution. The structure presents an inactive protease characterized by Asp740 (chymotrypsinogen 194) hydrogen bonded to His586 (chymotrypsinogen 40), preventing proper formation of the oxyanion hole and S1 specificity pocket. In addition, the catalytic triad residues are misplaced relative to the active conformation adopted by serine proteases in the chymotrypsin family. Finally, a unique form of zymogen inactivation is observed, characterized by a "foot-in-mouth" mechanism in which Trp761 (chymotrypsinogen 215) is folded into the S1 specificity pocket preventing substrate binding. | |
- | | |
- | Crystal structure of the proenzyme domain of plasminogen.,Peisach E, Wang J, de los Santos T, Reich E, Ringe D Biochemistry. 1999 Aug 24;38(34):11180-8. PMID:10460175<ref>PMID:10460175</ref> | |
- | | |
- | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |
- | </div> | |
- | <div class="pdbe-citations 1qrz" style="background-color:#fffaf0;"></div> | |
| | | |
| ==See Also== | | ==See Also== |
Line 36: |
Line 28: |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Human]] | + | [[Category: Homo sapiens]] |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Peisach, E]] | + | [[Category: Peisach E]] |
- | [[Category: Reich, E]] | + | [[Category: Reich E]] |
- | [[Category: Ringe, D]] | + | [[Category: Ringe D]] |
- | [[Category: Santos, T de los]]
| + | [[Category: Wang J]] |
- | [[Category: Wang, J]] | + | [[Category: De los Santos T]] |
- | [[Category: Chymotrypsin family]] | + | |
- | [[Category: Hydrolase]]
| + | |
- | [[Category: Microplasminogen]]
| + | |
- | [[Category: Serine protease]]
| + | |
- | [[Category: Zymogen]]
| + | |
| Structural highlights
Disease
PLMN_HUMAN Defects in PLG are the cause of plasminogen deficiency (PLGD) [MIM:217090. PLGD is characterized by decreased serum plasminogen activity. Two forms of the disorder are distinguished: type 1 deficiency is additionally characterized by decreased plasminogen antigen levels and clinical symptoms, whereas type 2 deficiency, also known as dysplasminogenemia, is characterized by normal, or slightly reduced antigen levels, and absence of clinical manifestations. Plasminogen deficiency type 1 results in markedly impaired extracellular fibrinolysis and chronic mucosal pseudomembranous lesions due to subepithelial fibrin deposition and inflammation. The most common clinical manifestation of type 1 deficiency is ligneous conjunctivitis in which pseudomembranes formation on the palpebral surfaces of the eye progresses to white, yellow-white, or red thick masses with a wood-like consistency that replace the normal mucosa.[1] [2] [3] [4] [5] [6] [7] [8]
Function
PLMN_HUMAN Plasmin dissolves the fibrin of blood clots and acts as a proteolytic factor in a variety of other processes including embryonic development, tissue remodeling, tumor invasion, and inflammation. In ovulation, weakens the walls of the Graafian follicle. It activates the urokinase-type plasminogen activator, collagenases and several complement zymogens, such as C1 and C5. Cleavage of fibronectin and laminin leads to cell detachment and apoptosis. Also cleaves fibrin, thrombospondin and von Willebrand factor. Its role in tissue remodeling and tumor invasion may be modulated by CSPG4. Binds to cells.[9] Angiostatin is an angiogenesis inhibitor that blocks neovascularization and growth of experimental primary and metastatic tumors in vivo.[10]
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
See Also
References
- ↑ Ichinose A, Espling ES, Takamatsu J, Saito H, Shinmyozu K, Maruyama I, Petersen TE, Davie EW. Two types of abnormal genes for plasminogen in families with a predisposition for thrombosis. Proc Natl Acad Sci U S A. 1991 Jan 1;88(1):115-9. PMID:1986355
- ↑ Azuma H, Uno Y, Shigekiyo T, Saito S. Congenital plasminogen deficiency caused by a Ser572 to Pro mutation. Blood. 1993 Jul 15;82(2):475-80. PMID:8392398
- ↑ Miyata T, Iwanaga S, Sakata Y, Aoki N. Plasminogen Tochigi: inactive plasmin resulting from replacement of alanine-600 by threonine in the active site. Proc Natl Acad Sci U S A. 1982 Oct;79(20):6132-6. PMID:6216475
- ↑ Miyata T, Iwanaga S, Sakata Y, Aoki N, Takamatsu J, Kamiya T. Plasminogens Tochigi II and Nagoya: two additional molecular defects with Ala-600----Thr replacement found in plasmin light chain variants. J Biochem. 1984 Aug;96(2):277-87. PMID:6238949
- ↑ Kikuchi S, Yamanouchi Y, Li L, Kobayashi K, Ijima H, Miyazaki R, Tsuchiya S, Hamaguchi H. Plasminogen with type-I mutation is polymorphic in the Japanese population. Hum Genet. 1992 Sep-Oct;90(1-2):7-11. PMID:1427790
- ↑ Schuster V, Mingers AM, Seidenspinner S, Nussgens Z, Pukrop T, Kreth HW. Homozygous mutations in the plasminogen gene of two unrelated girls with ligneous conjunctivitis. Blood. 1997 Aug 1;90(3):958-66. PMID:9242524
- ↑ Higuchi Y, Furihata K, Ueno I, Ishikawa S, Okumura N, Tozuka M, Sakurai N. Plasminogen Kanagawa-I, a novel missense mutation, is caused by the amino acid substitution G732R. Br J Haematol. 1998 Dec;103(3):867-70. PMID:9858247
- ↑ Schuster V, Seidenspinner S, Zeitler P, Escher C, Pleyer U, Bernauer W, Stiehm ER, Isenberg S, Seregard S, Olsson T, Mingers AM, Schambeck C, Kreth HW. Compound-heterozygous mutations in the plasminogen gene predispose to the development of ligneous conjunctivitis. Blood. 1999 May 15;93(10):3457-66. PMID:10233898
- ↑ Rossignol P, Ho-Tin-Noe B, Vranckx R, Bouton MC, Meilhac O, Lijnen HR, Guillin MC, Michel JB, Angles-Cano E. Protease nexin-1 inhibits plasminogen activation-induced apoptosis of adherent cells. J Biol Chem. 2004 Mar 12;279(11):10346-56. Epub 2003 Dec 29. PMID:14699093 doi:10.1074/jbc.M310964200
- ↑ Rossignol P, Ho-Tin-Noe B, Vranckx R, Bouton MC, Meilhac O, Lijnen HR, Guillin MC, Michel JB, Angles-Cano E. Protease nexin-1 inhibits plasminogen activation-induced apoptosis of adherent cells. J Biol Chem. 2004 Mar 12;279(11):10346-56. Epub 2003 Dec 29. PMID:14699093 doi:10.1074/jbc.M310964200
|